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A~tract--Gauss Seidel line relaxation is used to solve an implicit flux split difference approximation to 
the Navie~Stokes equations. The flux split approximation is chosen to maximize the weight of the 
diagonal elements of the block matrix elements that need to be inverted iteratively by the Gauss-Seidel 
procedure. There are several flux split approximations that can be chosen. However, not all are suitable for 
viscous flows containing shear or boundary layers. The present paper will illustrate the adverse effects of 
flux splitting in viscous flow calculations and propose corrections. The numerical procedures will be 
applied to solve for subsonic laminar flow past a fiat plate, turbulent flow past a cone at Mach 6, and 
chemical and thermal nonequilibrium flow past a sphere-cone body at Mach 18. 

I N T R O D U C T I O N  

There are many papers [1-4] that have appeared in recent years that use Gauss-Seidei line 
relaxation to numerically solve the Navier-Stokes equations. This method avoids the numerical 
inefficiency of using approximately factored procedures that have been the workhorse of 
compressible viscous computational fluid dynamics during the past decade. However, to enhance 
the numerical convergence of the unfactored procedure, the weights of the diagonal matrix elements 
appearing in the difference equations that approximate the governing flow equations are increased 
by using flux split, or upwind, difference approximations. The flux split procedures, largely 
developed by Steger and Warming [5], were introduced primarily to solve the equations governing 
inviscid flow. At present, there is still considerable uncertainty on their ability to calculate viscous 
shear or boundary layer flow [6]. 

The flux split procedures are flow type dependent procedures that choose forward, backward, 
and central difference approximations to flow derivatives according to local domain of dependence 
considerations. Perhaps the first such finite difference procedure for mixed flows was presented by 
Vincenti, Wagoner and Fisher in 1956 [7], for transonic flow past an inclined flat plate. They 
solved the governing equations in the hodograph plane and had 8 different categories of mesh 
points depending on whether they were regular subsonic points, regular supersonic points, or were 
located adjacent to sonic lines, shock waves, stagnation points etc. In the early 1970's Murman and 
Cole [8] used both type dependent differencing and Gauss-Seidel line relaxation to solve the 
Transonic Small Disturbance equation directly in the physical plane. Jameson [9] soon followed 
using these same two key ingredients plus a local coordinate rotation to solve the Full Potential 
equation. 

Type dependent differencing of the Euler equations was introduced by Moretti [10] in the 
mid-1970's within his "Lambda" scheme for solving the gas dynamic equations in nonconservation 
law form. Steger and Warming in their "Flux Vector Splitting" procedure applied type dependent 
differencing directly to the governing equations in conservation law form. These advances 
significantly improved the numerical resolution of the hyperbolic features of the flow. Additionally, 
their formulation increased the weights of the diagonal elements in the block matrix representation 
of the difference equations used to approximate the governing flow equations. This latter feature 
made practical the iterative inversion of implicit block matrix formulations of the governing 
equations by Gauss-Seidel line relaxation. Previously, the block matrix equation had to be factored 
into block tridiagonal elements for sequential direct inversion. Unfortunately, the factoring was 
only approximate and it introduced error that severely limited the time step size, causing 
slow numerical convergence histories. The Gauss-Seidel line relaxation of the unfactored equations 
is not so limited and for large time step choices it approaches a rapidly converging Newton 
procedure. 

135 



136 ROBERT W. MACCORMACK and GRAHAM V. CANDLER 

A decade and a half after the landmark papers of Murman-Cole and Jameson for solving the 
potential equations, Chakravarthy [11] applied type dependent differencing and Gauss-Seidel line 
relaxation to solve the Euler equations. And, as previously stated, there have been several recent 
applications using this approach to solve the Navier-Stokes equations. Yet, some uncertainty on 
the validity of using flux split procedures to calculate viscous phenomena still exists. 

There are several different ways to apply flux vector splitting [6]. Unfortunately, many of them 
are unsuitable for solving viscous flow problems containing shear or boundary layers. The difficulty 
with flux splitting arises in two ways, either an abnormally large numerical mixing of the fluid 
occurs within the boundary layer, or a fictitious pressure gradient is created that causes an 
unrealistic convection within the layer. This paper will analyze these difficulties, propose remedies 
for their removal, and attempt to demonstrate that accurate skin friction and heat transfer values 
can be obtained by applying the revised flux split procedures to calculate the subsonic laminar flow 
past a flat plate and the supersonic turbulent flow past a cone at Mach 6. In addition, some recently 
obtained results for hypersonic flow past a sphere cone-body by a chemically reacting gas in thermal 
nonequilibrium will be presented to demonstrate the power of these procedures. 

F L U X  VECTO R S P L I T T I N G  

We can write the Navier-Stokes equations in the following 2-D form: 

where 
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The vector equation above is written in terms of density p, Cartesian velocities u and v, pressure 
p, and total energy per unit volume e. The equation can be transformed for use in a general 
coordinate system (see Fig. 1) as follows. 

where: 

c3 U" OF' OG" 
+ = =  + -=-- + viscous terms -- O, (1) 0~ c¢ 

U'=UJ, F'=- V ~ x + G ~ y + U  J, 

G'= F + G ~ y + U  J, and J - -  ~xc~y c~y~xx " 

Using the identities: 

Ox Oy Ox Oy 
0x 0 0 j ,  0 y _  ~q 0 x _  03 j ,  0y 03 j ,  and J = V = 0 ~  0q 0N0~ 
O~ = ~--;, ~ Ox J' ON Oy 0 n - Ox 

and assuming that the general coordinate system is stationary with respect to the original Cartesian 
system, we can write the general, or rotated, flux vectors as: 

F'  OY 0x G' = 0y 0x =-~-~q V - - ~  G and -~ F +-~ G. (2) 
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x 

Fig. 1. Cartesian and general coordinate systems. 

We can represent the rotated flux vectors each as the product of  a rotated Jacobian matrix and 
the solution vector U. 

where 
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The rotated Jacobians can be diagonalized as follows 
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where 

and 
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The matrices Rw and RB, represent rotation matrices and u' and v' are rotated velocity vectors. 
The rotated Jacobian matrices A' and B' can be split into positive and negative parts. 

A+ = S-1RA,'C~,'A+~C.R,cS, A" = S-IRA)CA:A_ACA, RA, S, 

B'+ = S-IR~,'CB)A+eC~,RB, S, B" = S- IRs)  C-B,'A BCB, RB, S, 

where A+ or A designate diagonal matrices containing only the positive or negative elements, 
respectively, of the diagonal matrix A. 

Split fluxes can be defined by: 

F + = A ~ U ,  F' =A" U, G+ =B+U,  G ' = B ~ . U  

Note F' = F~ + F "  and G' = G+ + G'_. 
Equation (1) can now be rewritten as: 

c'~U I (OF'+ 0F2 OG'+ OG'_ ) 
0--7 + ? \ 03 + ~ + W + W + viscous terms = 0. 

A first order accurate explicit finite difference equation, according to Steger and Warming [5] 
and neglecting for the moment the numerical treatment of the viscous terms, is 

At D D+ D D+ "G2 U,") ' = U,~4--~.~ " F + +--~g " F'~ + ~-~ "G'+ +--~ +viscous terms 
• / i . j  

where 

D+ D D--L+ and D_ 
A~' A~' A~' A~ 

represent first order accurate and backward difference operators in the ¢ and ~/ coordinate 
directions, respectively. 

We can write the above difference equation in conservation law like form as: 

( r  ' G '  At ~+l,2,j~f~-l,2,: + G~,j+I,,2- ,.:-1,'2 +viscous terms , (3) u,") '  = v,"j - \ a ,  
/ 

where 

A* n n ~ n n F ~ + I , 2 . ~ =  +,,jUi. j +  A '_  . . . .  Ui+i.  j a n d  G~ . j+ I ,  2 B+,,:U~,j+ B'_ +,U~4+, 

The above split flux definitions will be referred to as the Steger-Warming split flux. 

(4) 

FLUX SPLITTING IN BOUNDARY LAYERS 

We are going to demonstrate that the above Steger-Warming split flux definition, eqn (4), is 
inappropriate for viscous shear layer problems because it introduces into the calculation an 
unacceptably large numerical diffusion. In fairness, the flux split procedure was introduced to solve 
the inviscid equations of fluid flow. It is ironic that where it is needed least, in viscous dominated 
regions of the flow, it can strongly adversely influence the accuracy of the calculation. We will 
propose some simple modifications that will improve significantly the accuracy of shear layer 
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Fig. 2. Boundary layer mesh. 

calculations. We start by considering the rotated flux vector G' at surface j + 1/2 in Fig. 2. Note 
for convenience we have chosen our general coordinates ¢ and rl so that they have integer values 
at mesh points, located at cell centers, and half integer values at mesh lines. The mesh lines form 
the cell surfaces surrounding the mesh points. Thus, A~ = At/= 1, and Vi, j represents cell volume. 
The above difference eqn (3) can be thought of equally as either a finite difference or finite volume 
equation. The flux vector G~:+ 1/2 should approximate the following vector [see eqn (2)] at ~ = i, 
~ /=j  + 1/2. 

G '  = ds, 

pV" 
1 Oy 

puv' - d~--, ~-~ p 
1 0 x  

pvv' + - -  - -  p 

(e + p)v' 

(5) 

(a) Excessive numerical dissipation 

Now let's examine the split flux approximation by direct though lengthy calculation 
under boundary layer conditions. The flux split procedures act on only the hyperbolic, or 
inviscid, terms of the governing equations. The parabolic, or viscous, terms are treated by other 
procedures. The boundary layer is fairly benign from the hyperbolic point of view. Pressure 
gradients and convection velocities across the layer are small. This region, whose principal 
feature is the tangential velocity gradient, essentially consists of fluid layers sliding relative to 
one another. For algebraic simplicity, let's assume that in the neighborhood of boundary layer 
point (i, j )  

(1) p, c, and v' are constant, 
(2) u' varies from 0 at the wall to u~ at the boundary layer edge. 
(3) v' is positive and negligibly small compared to u" or c. 

C.AF. 17/1--J 
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In the split flux approximation (dropping the subscript B' for convenience) 

= B + U = S  IR IC IA CRSU _ ± 

1 0 0 0 

= S_I R_I C _I A+ CR -u /p  l/p 0 0 
- - v / p  0 1 /p  0 

- d s  ' 

1 
=S-LR-IC IA+C~s " 

a;  

Note the surprising result that all that 
multiplication is density and pressure 
Continuing our evaluation, 

1 0 0 

0 1 0 
0 0 pc 
0 0 -pc  

p G ± = S - I R  ~C fA+_ 

Now, 2 4 = v ' - c < 0 ,  G '  =G~, 

G~.4=S IR-IC-ldB. 

[; pu 

0 

3x 

8y 
0 

0 0 

0 0 

8y 
0 

~x 
0 

0 dB 

remains of the original U vector after our first matrix 
All information about the velocity field is entirely lost. 

'JcaTI!iJ =S JR ~C fA± 

I p - p / c  2 ] 

0 

P _1 

°°°il 0 0 0 

0 0 0 

0 0 0  )~ 4 

p - - p / c  2 

0 
P 
P i , j+l  

= S IR IdB, 

1 I 
1 0 2C 2 2C 2 
0 1 0 0 

1 - 1  
0 0 

2pc 2pc 
0 0 1/2 1/2 

0 
0 

0 

24p i,j+l 

=S-I  

d~ 0 0 0 

~x 0)' 
0 0 

o ~ZY c~x o 

o o o d~, 

Z4p/2c20 ] 

-- J'4P ~2pc 
'~4P /2 i , j+l  

Ii °° ° 1 
p 0 0 
0 p 0 

pu pv l / fl 

dn, a4p/c 2 
Oy -'~24p/Zpc 

#X 
- - - f f ~ 4 p / 2 p  c 

dn, 24p/2 i , j+l  



The solution of  the Navier-Stokes equations using Guass-Seidel line relaxation 141 
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If we examine the first element of the vector G[s + ta we obtain using assumption (1): 

I ( - < '  1 g~=4, v o~,j c2)+5-~d( (v '+c)&j+(v-  )p,,j+l) ~-a~,p,,f, 

which is indeed a valid approximation to the first element of G' given in eqn (5). Note that 
this approximation was achieved by the counter balancing of two large terms of magnitude 
c (p/2c 2) = c/(27)p. That is, there was an equal exchange of mass per unit volume at a whopping 
convection speed of c/2~, between cell (i, j )  and cell (i, j + 1) that resulted in no net mass transfer. 
However, if we now examine the second element of the vector G~.j+ ~/2 

F /  p,]k 1 ( ) (,, '  

c~>, 1 ] 
-~ c9~ 2cdB, ( - ( v ' +  c)p~, s+ (v' - c)pt, s+ ~) 

[ , yc ] 
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The first two terms on the right above approximate the second element of G' given in eqn (5), but 
the third term represents a significant exchange, or mixing, of tangential momentum between cells 
(i, j )  and (i, j + 1). Under our boundary layer assumptions, the gradient of tangential velocity is 
nonzero and, unlike the case of the first element of the flux vector, there results a significant 
tangential momentum exchange. This mixing, caused solely by the flux splitting of the inviscid flux 
terms is purely numerical and, although it is of  order Ay, it can dwarf the true physical mixing 
represented by the viscous terms. Similarly, there is also an unacceptably large numerical exchange 
of kinetic energy of the order of, dn,(cl2?)p~.j(ot~.j+~-¢¢~,s), between adjacent points within the 
boundary layer. 
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The excessive numerical diffusion is caused by the choice of indices occurring on the split 
Jacobians defining the Steger-Warming flux split approximation to G' in eqn (4). If  we trace 
through the derivation once more, it is seen in particular that the mixing is caused by the difference 
in indices appearing on the S -~ matrix factor of the split Jacobians B'  and B'~. If instead the split 
flux formulas were given by: 

' " U" and G,'..i+~.2=B'+ ~ U T j + B  .~,U" (6) FI+L,2.~=A+,~2,U'.i +A ,+12.~ ,~t,/ ,., . . .  .... /+~ 

where the A ; and A '_., and the B~ and B '  matrices are defined using the same flow variables 
respectively, a cancellation, similar to that for the first element g~, would occur for all elements, 
thus, preventing excessive numerical mixing. 

In the present study the half integer indices i + 1/2 or j + 1/2 alternate between i and i + 1 or 
j and j + 1, respectively. For example: 

{~, n odd 
j + 1 /2  = 

+ 1, n even 

Alternatively, the half integer values could indicate that the flow variables used for split Jacobians 
are averaged from those at points i and i + 1 or j and j + l, respectively. 

Both flux split procedures of eqns (4) and (6) were used to calculate the flow plate at Mach 0.6. 
This test case was chosen because we can compare our results directly with the exact Blasius 
solution. The calculated boundary layer velocity profiles at Rex = 4.6 × 10 6 are compared to the 
Blasius solution in Fig. 3. The Steger-Warming form of flux splitting results in excessive numerical 
mixing throughout the boundary layer as predicted. The modified form of flux splitting of eqn (6) 
is significantly better. However, it also shows unacceptable errors close to the wall and near the 
"knee" of the profile. 

(b) Fictitious pressure gradients 
Defining both B~ and B'_ from the same values of the dependent flow variables significantly 

improved the calculation of boundary layer velocity profiles. However, an unwanted side effect of 
this modification produced, as will be shown, a fictitious pressure gradient across the boundary 
layer that in turn caused substantial artificial convection. To see this, let's again consider the split 
flux G~_, but now determined from eqn (5). 
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Fig. 3. Boundary layer velocity profiles. <> Modified solution; [] Steger-warming solution; -- Blasius 
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where: 
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Thus, in addition to the pressure, as was found earlier for the Steger-Warming form of flux splitting 
of eqn (4) (see the evaluation for G+ given previously), we find a new term, always positive, that 
depends on the velocity gradient. Although this term is of the order Ay 2, it can produce a fictitious 
stress that can accelerate the fluid within the boundary layer and thereby create an unacceptably 
large artificial convection. This second order effect was caused by modifying the indices of the split 
Jacobian matrices from those originally given by Steger and Warming. Thus, either excess 
numerical diffusion results if the indices of the split flux Jacobians are chosen to match those on 
the U vector they multiply, or a fictitious pressure gradient causing an artificial convection results 
if they are chosen to match each other. To remove this adverse second order side effect, the split 
Jacobians were further modified within the boundary layer as follows: 
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~ i . j + l ~  --Ui,  j + l [ ~  --IJi, j + l ~  

Thus, only the fourth row of the S matrix (and consequently also the affected elements of S ~) 
are changed back to the Steger-Warming formulation. All the rest remain as defined by eqn (6). 

Figures 4(a) and (b) compare the velocity profiles calculated with the modified flux split 
method, with and without the pressure gradient correction, with the Blasius solution. Of particular 
note is the agreement of the corrected procedure profile in the magnified near wall region shown 
in Fig. 4(b). It is almost coincident with the Blasius solution. The difference in skin friction is 
approximately 0.6%. The remaining discrepancy shown near the knee of the profile in Fig. 4(a) 
is caused perhaps by the coarseness of the mesh or by the first order accuracy of the method. 
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T U R B U L E N T  S U P E R S O N I C  F L O W  

An implicit flux split method, with the split Jacobians defined as in eqn (7) and the split fluxes 
defined by eqn (6) (except that the time index n was replaced by n + 1) was applied to solve for 
turbulent supersonic flow past a cone. In addition, the flux splitting was second order accurate 
outside the boundary layer. The viscous terms were also treated implicitly with second order 
accuracy everywhere. The resulting difference equations were solved in unfactored form by 
Gauss-Seidel line relaxation. References [2, 3] provide a description of the solution technique. 

Figure 5 shows a 36 x 44 mesh about a cone of half angle 10 ° with approximately 20 points 
distributed through the boundary layer region. The freestream conditions correspond to Mach 6 
flow at an altitude of 90,000 feet (p = 36.144 lbf/ft 2, T = 403.3 ° R, and Reynolds number of 106/ft). 

O .  

- I0 .0  0.0 lO.O 20.0 30.0 'lU.U :~u.u ou.O 
X 

Fig. 5. Computational  mesh about a cone. 
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The surface temperature of the cone was 1200 ° R and the boundary layer was tripped at x = 5 ft, 
measured from the point of the cone. At the edge of the boundary layer the tangential velocity 
u" = 5.75 × l03 ft/s and the temperature Te = 552.5 ° R. This case was chosen to examine the quality 
of heat transfer predictions for a flow field of current engineering interest using flux split procedures 
on a computational mesh of common practice dimensions. The Reynolds averaged Navier-Stokes 
equations together with the Baldwin-Lomax turbulence model [12] were used to describe the flow. 
The numerical solution converged in approximately 80 time steps with the CFL number increasing 
from l0 to 2 × l08 during the course of the calculation. Figures 6(a) and (b) compare the calculated 
velocity profile at x = 50 ft with a boundary layer solution of Adams [13, 14]. The boundary layer 
solution contained 161 points across the boundary layer and for the purposes of this comparison 
is considered to be exact. Only some of the boundary layer solution points are shown in the figures. 
The agreement is fairly good and the skin friction is different by approximately 5% as shown in 
the magnified wall region in Fig. 6(b). Temperature profiles are compared in Figs 7(a) and (b) at 
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Fig. 7. (a) Temperature profiles on cone at x = 50 ft. (b) Temperature profiles near cone surface. - - A - -  
Present solution; O boundary layer solution--Adams. 

the same location. Note the peak in temperature predicted very near the wall in Fig. 7(a). Figure 
7(b) presents a magnified view of this region showing good agreement with the boundary layer 
solution for the gradient of temperature near the wall, and the value and location of its peak 
temperature. This good agreement could only be made if the turbulence models used in both 
calculations predicted the distribution and levels of turbulent eddy viscosity similarly. Adams used 
a Patankear-Spalding turbulence model [15] in his calculation. Figure 8 compares the eddy 
viscosity profiles of both calculations at x = 50 ft. As shown, the profiles are fairly similar with the 
largest differences occurring near the boundary layer edge. 

The overall agreement of the present results with the boundary layer results of Adams is fairly 
good. However, there are some differences near the knees of the velocity profiles and in this same 
region for the temperature profiles. Some of this is probably caused by the differences in the 
turbulence models used. Other factors include comparing values at slightly different x - y  locations 
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because the data for the boundary layer solution was given normal to the cone surface and those 
of the present calculation were at a constant x location, at most a 2% difference. The remaining 
difference represents numerical error from the computational method and coarseness of the mesh 
used in the present calculation. 

HYPERSONIC FLOW 

Gauss-Seidel line relaxation with flux splitting was also used to solve the equations describing 
the viscous flow of a chemically reacting gas in thermal nonequilibrium past a blunted cone 
at hypersonic speed [16]. Air (79% diatomic nitrogen and 21% diatomic oxygen) travelling at 
hypersonic speed through a standing shock wave will dissociate, forming atomic nitrogen and 
oxygen and creating nitric oxide. In addition, the vibrational temperatures of the diatomic 
molecules of the gas will be out of equilibrium temporarily with the translational and rotational 
temperatures following the sudden shocking of the gas. For such an axisymmetric flow, the set of 
equations required consists of 5 species continuity equations (N2, 02, NO, N and O), 2 momentum 
equations, 3 vibrational energy equations, and a total energy equation. An implicit block matrix 
formulation for the governing equations solves for both the flow equations and the gas chemistry 
and thermodynamics in a fully coupled manner. The block matrix elements are of dimension 
11 x 11. 

Figure 9 shows the mass concentrations for atomic oxygen about a sphere-cone body (cone half 
angle of 10.5 °) in Mach 17.94 flow. The nose radius is 20 cm, constant wall temperature is 1500 K, 
and the freestream conditions correspond to an altitude of 50 km. Figures 10(a) and (b) show the 
contours of translational and vibrational temperature, respectively. Note the massive extent of 
thermal nonequilibrium occurring in the flow field. Figures 1 l(a) and (b) compare the reacting gas 
results for surface pressure and heat transfer with those for a perfect gas. The surface pressures 
agree well, but the reacting gas calculation shows considerably more heat transfer to the 
sphere-cone body. This is caused by the release of internal energy in the cool wall region by the 
recombination of atomic nitrogen and oxygen to form their respective diatomic molecules. 
Approximately 250 iterations and 7 min of CRAY XMP computer time were required to obtain 
converged solutions on a 30 x 30 mesh. 

CONCLUSIONS 

Gauss-Seidel line relaxation can be used to solve the Navier-Stokes equations efficiently. The 
convergence efficiency depends upon the weights of the diagonal matrix elements in the finite 
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difference equations used to approximate the governing compressible viscous flow equations. Flux 
split difference approximations used to maximize diagonal element weight can adversely affect 
solution accuracy in viscous shear layer regions if not done carefully. Flux split procedures have 
been devised for accurate shear layer calculations. 

Gauss-Seidel line relaxation with type dependent differencing, used previously to solve the 
Transonic Small Disturbance equation, the Full Potential equation, and the Euler equations, has 
been verified for solving the Navier-Stokes equations, and has been extended for solving the 
equations describing the viscous flow of a chemically reacting gas in thermal nonequilibrium at 
hypersonic speeds. 
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