AE 624 Tutorials -3

Questions

1) Consider an infinitely thin flat plate at an angle of attack of 15 deg in a Mach 8 flow. Assume inviscid flow. Calculate the pressure coefficients on the top and bottom surface of the plate, the lift and drag coefficients, and the lift-to-drag ratio using a) exact shock-wave and expansion-wave theory and b) Newtonian theory. Compare the results.

2) Find the drag on the below wedge (base height-1m) using Newtonian theory

$$
\begin{array}{ll}
M=12 & \longrightarrow
\end{array}{ }^{\circ} \mathrm{C}
$$

3) Find the C_{D} for circular cylinder using Newtonian Approximation.
4) Find the C_{D} for hemisphere using Newtonian Approximation and then find the drag for sphere flying at Mach 10, using Newtonian Approximation, $\mathrm{T}_{\text {infi }}-200 \mathrm{~K}, \mathrm{P}_{\text {infi }}-120$ pa, Radius $=1 \mathrm{~m}$.
5) Find the C_{D} for cone (Θ_{c}) using Newtonian Approximation.
