
• Recap: Lecture 9: 18th August 2015, 1530-1630 hrs. 
– 3-D flow in axial flow compressors 

• 3-D blade shapes 
• 3-D flows:  

– secondary flows 
– tip clearance and leakage flows 
– passage vortices 
– scraping vortex 
– endwall flows 

 
• Note:  

– Lecture on Tuesday, 25th August 2015 will start at 1545 hrs.  
–  “Crib” session for Quiz # 1 between 1515-1545 hrs. on 25th 

August 2015 
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• Account for radial variations in  

– Blade speed 

– Axial velocity 

– Tangential velocity 

– Static pressure 

• Large variations in these parameters 
can occur as the flow passes through 
a rotor. 

Radial equilibrium analysis 
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• The radial equilibrium method is widely 
used for three-dimensional design 
calculations in axial compressors and 
turbines. 

• Is based upon the assumption that any 
radial flow which may occur is completed 
within a blade row, the flow outside the 
row then being in radial equilibrium. 

Radial equilibrium analysis 
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Radial equilibrium flow through a rotor blade row 

Radial equilibrium analysis 
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Let us assume that a 
small element inside the 
rotating blade passage 
represents the fluid flow 
inside the rotor, such 
that the analysis of the 
status of this element 
may wholly represent 
the status of the whole 
flow inside the rotor 
passage 

Radial equilibrium analysis 
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Rotor blades 

Fluid element 



Radial equilibrium analysis 

It may be recalled 
that this element 
is also executing a 
path through the 
curved diffusing 
passage between 
the rotor blades. 
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Simple three dimensional flow analysis: 
Initial assumptions 

1) Radial movement of the flow is governed  
by the radial equilibrium of forces.  

2) Radial movements occur within the blade  
passage only and not outside it.  

3) Flow analysis involves balancing the  
radial force exerted by the blade rotation. 

4) Gravitational forces can be neglected.  

5) Radial velocities are considered negligibly 
small (when compared with other velocity 
components) 8 



Consider this fluid element of unit axial length 
subtended by an angle dθ, of thickness dr, along 
which the pressure variation is from P to P+dP. 
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A fluid element in radial equilibrium (Cr = 0) 
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The centrifugal force = (rrdrdq)w2r 

 Cw= rw  

 

The centrifugal force = r Cw 
2drdq 

The pressure force = r dP dq 

 
r Cw 

2drdq = r dP dq 

(dP/dr)(1/ r)= (1/ r) Cw 
2 



Resolving all the aerodynamic forces, acting on this 
element,  

We get, 

        (P+dP)(r+dr).dq.1 – P.r.dq.1 –  

                               2(P+dP/2).dr.(dq /2).1  
     =  ρ.r.dr.dq.Cw

2 /r 

 

LHS represents the sum total of all static 
forces acting on the element and RHS 
represents the force due to the centripetal 

action.  
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Neglecting the second order terms (products 
of small terms e.g. dP.dr etc.) the equation 
reduces to  
 

This is called the  

Simple Radial Equilibrium Equation  

𝟏

𝝆

𝒅𝑷

𝒅𝒓
=
𝟏

𝒓
𝑪𝒘
𝟐  

12 



Consider the following governing equations: 

  1)  h0 = h + C2/2 = cpT + ½(Ca
2 + Cw

2) 

2) cp.T =  

p
= cγ

ρ
3) Isentropic Law (3) 

From Equation of state (2) 

Energy Equation (1) 

Where, h0 is total enthalpy, h is static enthalpy   
pressure p, density r , are the fluid properties 

and cp and  g are the thermal properties  of air 

at the operating condition 
13 



Substituting for cp from Eqn (2) and then 
differentiating the Eqn (1) w.r.t.  r, we get  

𝒅𝒉𝟎
𝒅𝒓

= 𝑪𝒂
𝒅𝑪𝒂
𝒅𝒓

+ 𝑪𝒘
𝒅𝑪𝒘
𝒅𝒓

+
𝜸

𝜸 − 𝟏

𝟏

𝝆

𝒅𝑷

𝒅𝒓
−
𝑷

𝝆𝟐
𝒅𝝆

𝒅𝒓
 

Differentiating the Eqn (3) (isentropic law) 
we get  

Substituting this in the new energy equation 
we get (after neglecting products of smaller terms) 

𝒅𝝆

𝒅𝒓
=

𝝆

𝜸𝑷

𝒅𝑷

𝒅𝒓
 

𝒅𝒉𝟎
𝒅𝒓

= 𝑪𝒂
𝒅𝑪𝒂
𝒅𝒓

+ 𝑪𝒘
𝒅𝑪𝒘
𝒅𝒓

+
𝟏

𝝆

𝒅𝑷

𝒅𝒓
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Now invoking the simple radial equilibrium 
equation developed earlier in the energy 
equation 

𝟏

𝝆

𝒅𝑷

𝒅𝒓
=
𝟏

𝒓
𝑪𝒘
𝟐  

𝒅𝒉𝟎
𝒅𝒓

= 𝑪𝒂
𝒅𝑪𝒂
𝒅𝒓

+ 𝑪𝒘
𝒅𝑪𝒘
𝒅𝒓

+
𝑪𝒘
𝟐

𝒓
 

We get 

15 



• At entry to the compressor, except near the 
hub and the casing, enthalpy h0(r) = constant. 
  
• Using the condition of uniform work 
distribution along the blade length ( i.e. 
radially constant) we can say that 
 

𝒅𝒉𝟎
𝒅𝒓

= 𝟎 
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Thus, the energy equation would be 
written as, 

Now, if Ca = constant at all radii, then the 
first term is zero and the above equation 
reduces to  

2dC Cw wC = -w dr r

𝑪𝒂
𝒅𝑪𝒂
𝒅𝒓

+ 𝑪𝒘
𝒅𝑪𝒘
𝒅𝒓

+
𝑪𝒘
𝟐

𝒓
= 𝟎 
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This, on integration, yields  

Therefore, the equation becomes  

Cw. r = constant.  

This condition is commonly known 
as the  Free Vortex Law 

𝒅𝑪𝒘
𝑪𝒘

= −
𝒅𝒓

𝒓
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• The term Free Vortex essentially denotes that the 
strength of the vortex (or lift per unit length) 
created by each airfoil section used from the root 
to the tip of the blade remains constant 
   Lift , L = r.V.Γ  
 where, r is the density,  
                   V is the inlet velocity, and  
                   Γ is the circulation  
 
• It, therefore, means that at the trailing edge of 
the blade, the trailing vortex sheet has constant 
strength from the root to the tip of the blade. 
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• The simple Radial Equilibrium may be used 
to explain some of the basic characteristics 
of an axial compressor 

 

• Radial equilibrium requires that in a 

medium (<1.0) to low (« 1.0) hub/tip 

radius ratio in a rotor blade,  change of 
whirl component (ΔCw  or ΔVw)  must be 
very large near the hub (root) compared to 
that near the casing (tip)   
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• Radial equilibrium, thus, requires that 
flow turning at hub, Δβ, must be much 
larger at hub than at the tip. 

 
• Hence, the hub airfoil must be of much 

higher camber than that of the tip airfoil 
 
• Whirl component downstream of the rotor 

(Cw2 or Vw2) is higher than the upstream 
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