
• Recap: Lecture 16, 26th September 2015, 
1030-1135 hrs. 

– Introduction to axial flow turbines  

• Functions of axial turbines 

• Components of axial turbines 

• Thermodynamics 

• Velocity triangles 

• Impulse and reaction turbines 



Axial flow turbines 
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Thermodynamic changes in Turbine in a GTE Cycle 



Velocity triangles 
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Lect-20 
Work and stage dynamics 
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Lect-20 
Work and stage dynamics 
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• Turbine work per stage is limited by 

– Available pressure ratio 

– Allowable blade stresses and turning  

• Unlike compressors, boundary layers are 
generally well behaved, except for local 
pockets of separation 

• The turbine work ratio is also often defined 
in the following way: 



Lect-20 
Impulse turbine stage 
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50% Reaction turbine stage 
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Turbine Cascade 

• A cascade is a stationary array of blades. 

• Cascade is constructed for measurement of 
performance similar to that used in axial 
turbines. 

• Cascade usually has porous end-walls to 
remove boundary layer for a two-dimensional 
flow. 

• Radial variations in the velocity field can 
therefore be excluded. 

• Cascade analysis relates the fluid turning 
angles to blading geometry and measure 
losses in the stagnation pressure.  



Turbine Cascade 

• Turbine cascades are tested in wind tunnels 
similar to what was discussed for compressors.  

• However, turbines operate in an accelerating 
flow and therefore, the wind tunnel flow driver 
needs to develop sufficient pressure to cause 
this acceleration. 

• Turbine blades have much higher camber and 
are set at a negative stagger unlike 
compressor blades. 

• Cascade analysis provides the blade loading 
from the surface static pressure distribution 
and the total pressure loss across the cascade. 



Turbine Cascade 



Turbine Cascade 

• From elementary analysis of the flow through 
a cascade, we can determine the lift and drag 
forces acting on the blades. 

• This analysis could be done using inviscid or 
potential flow assumption or considering 
viscous effects (in a simple manner). 

• Let us consider Vm as the mean velocity that 

makes and angle αm with the axial direction. 

• We shall determine the circulation developed 
on the blade and subsequently the lift force. 

• In the inviscid analysis, lift is the only force. 



Turbine Cascade 

Inviscid flow through a turbine cascade 



Turbine Cascade 
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Turbine Cascade 

• Viscous effects manifest themselves in the 
form to total pressure losses. 

• Wakes from the blade trailing edge lead to 
non-uniform velocity leaving the blades. 

• In addition to lift, drag is another force that 
will be considered in the analysis. 

• A component of drag actually contributes to 
the effective lift.  

• We define total pressure loss coefficient as: 
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Lect-20 

Turbine Cascade 

Viscous flow through a turbine cascade 



Turbine Cascade 
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Turbine Cascade 

• Based on the calculation of the lift and drag 
coefficients, it is possible to determine the 
blade efficiency. 

• Blade efficiency is defined as the ratio of ideal 
static pressure drop to obtain a certain change 
in KE to the actual static pressure drop to 
produce the same change in KE. 

 

mL

D
b

D

mC

C

mC

C

b

sinC

C

,definitionlifttheintermC the neglect we If

cot

tan

L

D

L

D

α

η

α

α
η

2

2
1

1

1

1














Degree of reaction 

• Acceleration takes place in both rotor and 
the stator. 

• Enthalpy drop in the rotor as well as the 
stator. 

• Degree of reaction provides a measure of 
the extent to which the rotor contributes to 
the overall enthalpy drop in the stage. 
 



Velocity triangles 

U 

C1 

V3 

V2 
C2 

Rotor 

Stator/Nozzle 

1 

2 

3 β3 

β2 

α1 

α3 

α2 

U 

C3 



Degree of reaction 

)CC(Uhhcesin,Also

)VV)(VV()VV(hh

becomes, this rotor, the of

 downstream and upstream same the is velocity axial the If

VV
hh

constant, is enthalpy stagnation apparent

 the rotor, the to fixed system coordinate a in Since,

hh

hh

stage the in drop enthalpy Stagnation

rotor the in drop enthalpy Static
R

ww

wwwwww2

2

x

320301

23232
12

2

2

32
1

3

2

2

2

3
3

0301

32

22
















Degree of reaction 

























)tan(tan
U

C
Rthatso

UtanCVand

tanCV,thatknowWe

U

)VV(
R,Therefore

)CC()VV(,Since

)CC(U

)VV)(VV(
R

a
X

aw

aw

ww
X

wwww

ww

wwww
X

322
1

22

33

23

2323

32

2323

1

2

2

βα

α

β



25 

Degree of reaction 
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Impulse turbine stage 
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Efficiency 

• We noted that the aerodynamic losses in 
the turbine differ with the stage 
configuration, or the degree of reaction. 

• Improved efficiency is associated with 
higher reaction, which implies less work 
per stage and therefore a higher number of 
stages for a given overall pressure ratio. 

• The understanding of losses is important to 
design, not only in the choice of the 
configuration, but also on methods to 
control these losses. 



Efficiency 

• There are two commonly used turbine 
efficiency definitions. 

• Total-to-static efficiency 

• Total-to-total efficiency 

• The usage of the efficiency definition depends 
upon the application. 

• In land-based power plants, the useful turbine 
output is in the form of shaft power and 
exhaust KE is a loss.  

• In this case the ideal turbine process would be 
isentropic such that there is no exhaust KE. 



Efficiency 
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Efficiency 
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Efficiency 
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Efficiency 
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Efficiency 

Influence of loading on the total-to-static efficiency 


