• Recap: Lecture 5: 4th July 2015, 1530-1655 hrs.
 – Velocity triangles
 – Work and compression
 – Design parameters
 • Flow coefficient
 • Stage loading
 • Degree of reaction
Design parameters

- The following design parameters are often used in the parametric analysis of axial compressors:
 - Flow coefficient,
 \[\phi = \frac{C_a}{U} \]
 - Stage loading or loading coefficient,
 \[\psi = \frac{\Delta h_0}{U^2} = \frac{\Delta C_w}{U} \]
 - Degree of reaction, \(R_x \)
 - Diffusion factor, \(D^* \)
Degree of reaction

\[R_x = \frac{\text{Static enthalpy rise in the rotor}}{\text{Stagnation enthalpy rise in the stage}} \]

\[= \frac{h_2 - h_1}{h_{03} - h_{01}} \approx \frac{h_2 - h_1}{h_{02} - h_{01}} \]

For a nearly incompressible, isentropic flow,

\[h_2 - h_1 \approx \frac{1}{\rho} (P_2 - P_1) \text{ for the rotor} \]

and for the stage, \[h_{03} - h_{01} \approx \frac{1}{\rho} (P_{03} - P_{01}) \]

\[\therefore R_x = \frac{h_2 - h_1}{h_{02} - h_{01}} \approx \frac{P_2 - P_1}{P_{02} - P_{01}} \]
Degree of reaction

From the steadyflow energy equation,

\[h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2} \]

\[\therefore R_x = \frac{h_2 - h_1}{h_{03} - h_{01}} = \frac{V_1^2 - V_2^2}{2U(C_{w2} - C_{w1})} \]

For constant axial velocity, \(V_1^2 - V_2^2 = V_{w1}^2 - V_{w2}^2 \)
And, \(V_{w1} - V_{w2} = C_{w1} - C_{w2} \)

On simplification, \(R_x = \frac{1}{2} - \frac{C_a}{2U} (\tan \alpha_1 - \tan \beta_2) \)

or, \(R_x = \frac{C_a}{2U} (\tan \beta_1 + \tan \beta_2) \)
Degree of reaction

• Special cases of R_x
 - $R_x=0, \beta_2 = -\beta_1$, There is no pressure rise in the rotor, the entire pressure rise is due to the stator, the rotor merely deflects the incoming flow: impulse blading
 - $R_x=0.5$, gives $\alpha_1 = \beta_2$ and $\alpha_2 = \beta_1$, the velocity triangles are symmetric, equal pressure rise in the rotor and the stator
 - $R_x=1.0, \alpha_2 = -\alpha_1$, entire pressure rise takes place in the rotor while the stator has no contribution.
Degree of reaction

\[\beta_2 = - \beta_1 \]

\[\alpha_1 = \beta_2 \text{ and } \alpha_2 = \beta_1 \]

\[R_x = 0.0 \]

\[R_x = 0.5 \]

\[R_x = 1.0 \]
Diffusion factor

• Fluid deflection ($\beta_2 - \beta_1$) is an important parameter that affects the stage pressure rise.
• Excessive deflection, which means high rate of diffusion, will lead to blade stall.
• Diffusion factor is a parameter that associates blade stall with deceleration on the suction surface of the airfoil section.
• Diffusion factor, D^*, is defined as

$$D^* = \frac{V_{\text{max}} - V_2}{V_1}$$

Where, V_{max} is the ideal surface velocity at the minimum pressure point and V_2 is the ideal velocity at the trailing edge and V_1 is the velocity at the leading edge.
Diffusion factor

- **Velocity**
- **Percent chord**
- **Suction surface**
- **Pressure surface**

- V_1
- V_{max}
- V_2
Diffusion factor

• Lieblein (1953) proposed an empirical parameter for diffusion factor.
 – It is expressed entirely in terms of known or measured quantities.
 – It depends strongly upon solidity (C/s).
 – It has been proven to be a dependable indicator of approach to separation for a variety of blade shapes.
 – D^* is usually kept around 0.5.

$$D^* = 1 - \frac{V_2}{V_1} + \frac{V_{w1} - V_{w2}}{2\left(\frac{C}{s}\right) V_1}$$

Where, C is the chord of the blade and s is the spacing between the blades.
Cascade aerodynamics

- A cascade is a stationary array of blades.
- Cascade is constructed for measurement of performance similar to that used in axial compressors.
- Cascade usually has porous end-walls to remove boundary layer for a two-dimensional flow.
- Radial variations in the velocity field can therefore be excluded.
- Cascade analysis relates the fluid turning angles to blading geometry and measure losses in the stagnation pressure.
Cascade aerodynamics

• The cascade is mounted on a turntable so that its angular direction relative to the inlet can be set at different incidence angles.

• Measurement usually consist of pressures, velocities and flow angles downstream of the cascade.

• Probe traverse at the trailing edge of the blades for measurement.

• Blade surface static pressure using static pressure taps: c_p distribution.
Cascade wind tunnel

Linear open circuit cascade wind tunnel
Low-speed Cascade Tunnel at the Turbomachinery Research Lab, IITB
Cascade nomenclature

C = Chord
s = spacing/pitch
t = thickness
θ = camber
χ = stagger
i = incidence angle
δ = deflection angle

Performance parameters

- Measurements from cascade: velocities, pressures, flow angles …
- Loss in total pressure expressed as total pressure loss coefficient
 \[\bar{\omega} = \frac{P_{01} - P_{02}}{\frac{1}{2} \rho V_1^2} \]
- Total pressure loss is very sensitive to changes in the incidence angle.
- At very high incidences, flow is likely to separate from the blade surfaces, eventually leading to stalling of the blade.
Performance parameters

• Blade performance/loading can be assessed using static pressure coefficient:

\[C_P = \frac{P_{\text{local}} - P_{\text{ref}}}{\frac{1}{2} \rho V_1^2} \]

Where, \(P_{\text{local}} \) is the blade surface static pressure and \(P_{\text{ref}} \) is the reference static pressure (usually measured at the cascade inlet).

• The \(C_P \) distribution (usually plotted as \(C_P \) vs. \(x/C \)) gives an idea about the chordwise load distribution.
Performance parameters

- Deflection, degrees
- Total pressure loss coefficient
- Position along cascade
- Location of the blade trailing edge
Performance parameters

(a) Normal operation (b) Stalled operation
Performance parameters

![Graph showing Total pressure loss coefficient vs. Incidence angle, degrees]
Losses in a compressor blade

• Nature of losses in an axial compressor
 – Viscous losses
 – 3-D effects like tip leakage flows, secondary flows etc.
 – Shock losses
 – Mixing losses

• Estimating the losses crucial designing loss control mechanisms.

• However isolating these losses not easy and often done through empirical correlations.

• Total losses in a compressor is the sum of the above losses.
Losses in a compressor blade

• Viscous losses
 – Profile losses: on account of the profile or nature of the airfoil cross-sections
 – Annulus losses: growth of boundary layer along the axis
 – Endwall losses: boundary layer effects in the corner (junction between the blade surface and the casing/hub)

• 3-D effects:
 – Secondary flows: flow through curved blade passages
 – Tip leakage flows: flow from pressure surface to suction surface at the blade tip
Losses in a compressor blade

- The loss manifests itself in the form of stagnation pressure loss (or entropy increase).

\[
\frac{\Delta s}{R} = -\ln \frac{P_{02}}{P_{01}} = -\ln \left[1 - \frac{(\Delta P_o)_{\text{loss}}}{P_{01}}\right]
\]

Expanding the above equation in an infinite series,

\[
\frac{\Delta s}{R} = \frac{(\Delta P_o)_{\text{loss}}}{P_{01}} + \frac{1}{2} \left(\frac{(\Delta P_o)_{\text{loss}}}{P_{01}}\right)^2 + \ldots
\]

Neglecting higher order terms, \(\frac{\Delta s}{R} = \frac{(\Delta P_o)_{\text{loss}}}{P_{01}} \)

Since, \(\omega = \frac{(\Delta P_o)_{\text{loss}}}{\frac{1}{2} \rho V_1^2} = \frac{\Delta s}{R} \frac{P_{01}}{\frac{1}{2} \rho V_1^2} \)

or, \(\frac{\Delta s}{R} = \left(\frac{\omega \rho V_1^2}{2P_{01}}\right) \)
Losses in a compressor blade

- The overall losses in a turbomachinery can be summarised as:

\[\omega = \omega_P + \omega_m + \omega_{sh} + \omega_s + \omega_L + \omega_E + \ldots \]

Where, \(\omega_P \) : profile losses
\(\omega_m \) : mixing losses
\(\omega_{sh} \) : shock losses
\(\omega_s \) : secondary flow loss
\(\omega_L \) : tip leakage loss
\(\omega_E \) : Endwall losses