
• Recap: Lecture 5: 4th July 2015, 1530-1655 hrs. 
– Velocity triangles 
– Work and compression 

– Design parameters 
• Flow coefficient 
• Stage loading 
• Degree of reaction 

 



Design parameters 

• The following design parameters are often 
used in the parametric analysis of axial 
compressors: 

– Flow coefficient, 

  

– Stage loading or loading coefficient,  

 

– Degree of reaction, Rx 

– Diffusion factor, D* 

 

UCa /

UCUh w // 2

0 
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Degree of reaction 
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Degree of reaction 

• Special cases of Rx 

–  Rx=0,           , There is no pressure rise in the 
rotor, the entire pressure rise is due to the 
stator, the rotor merely deflects the incoming 
flow: impulse blading 

– Rx=0.5, gives                          , the velocity 
triangles are symmetric, equal pressure rise in 
the rotor and the stator 

– Rx=1.0,            , entire pressure rise takes 
place in the rotor while the stator has no 
contribution.  
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Lect-3 

Degree of reaction 
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Diffusion factor 

• Fluid deflection (β2-β1)is an important 
parameter that affects the stage pressure rise. 

• Excessive deflection, which means high rate of 
diffusion, will lead to blade stall. 

• Diffusion factor is a parameter that associates 
blade stall with deceleration on the suction 
surface of the airfoil section. 

• Diffusion factor, D*, is defined as  
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Diffusion factor 

• Lieblein (1953) proposed an empirical 
parameter for diffusion factor. 

– It is expressed entirely in terms of known or 
measured quantities. 

– It depends strongly upon solidity (C/s). 

– It has been proven to be a dependable indicator of 
approach to separation for a variety of blade 
shapes. 

– D* is usually kept around 0.5. 
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Cascade aerodynamics 

• A cascade is a stationary array of blades. 

• Cascade is constructed for measurement of 
performance similar to that used in axial 
compressors. 

• Cascade usually has porous end-walls to 
remove boundary layer for a two-dimensional 
flow. 

• Radial variations in the velocity field can 
therefore be excluded. 

• Cascade analysis relates the fluid turning 
angles to blading geometry and measure 
losses in the stagnation pressure.  



Cascade aerodynamics 

• The cascade is mounted on a turntable so 
that its angular direction relative to the 
inlet can be set at different incidence 
angles. 

• Measurement usually consist of pressures, 
velocities and flow angles downstream of 
the cascade. 

• Probe traverse at the trailing edge of the 
blades for measurement. 

• Blade surface static pressure using static 
pressure taps: cp distribution. 

 



Cascade wind tunnel 

Linear open circuit cascade wind tunnel 



Low-speed Cascade Tunnel at the  
Turbomachinery Research Lab, IITB 



Cascade nomenclature 
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Performance parameters 

• Measurements from cascade: velocities, 
pressures, flow angles ... 

• Loss in total pressure expressed as total 
pressure loss coefficient 

 

 

• Total pressure loss is very sensitive to 
changes in the incidence angle. 

• At very high incidences, flow is likely to 
separate from the blade surfaces, 
eventually leading to stalling of the blade. 
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Performance parameters 

• Blade performance/loading can be 
assessed using static pressure coefficient: 

 

 

 

 

 

• The CP distribution (usually plotted as CP 
vs. x/C) gives an idea about the 
chordwise load distribution. 
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Performance parameters 
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Performance parameters 



Performance parameters 
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Performance parameters 
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Losses in a compressor blade 

• Nature of losses in an axial compressor 
– Viscous losses  

– 3-D effects like tip leakage flows, secondary 
flows etc. 

– Shock losses 

– Mixing losses 

• Estimating the losses crucial designing loss 
control mechanisms. 

• However isolating these losses not easy and 
often done through empirical correlations.  

• Total losses in a compressor is the sum of 
the above losses. 



Losses in a compressor blade 

• Viscous losses 
– Profile losses: on account of the profile or nature 

of the airfoil cross-sections 

– Annulus losses: growth of boundary layer along 
the axis 

– Endwall losses: boundary layer effects in the 
corner (junction between the blade surface and 
the casing/hub) 

• 3-D effects: 
– Secondary flows: flow through curved blade 

passages 

– Tip leakage flows: flow from pressure surface to 
suction surface at the blade tip 

 

 
 

 

 



Losses in a compressor blade 

• The loss manifests itself in the form of stagnation 
pressure loss (or entropy increase). 
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Losses in a compressor blade 

• The overall losses in a turbomachinery can be 
summarised as: 

 

 

 

losses Endwall:

loss leakage  tip:

loss flowsecondary :

lossesshock  :
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