
• Recap: Lecture 6: 7th July 2015, 1530-1655 hrs. 
– Design parameters 

• Degree of reaction 
• Diffusion factor 

– Cascade aerodynamics 
• Cascade tunnel 
• Need for cascade tests 
• Cascade nomenclature 
• Basic data from cascade tests: total pressure loss, blade 

static pressure distribution 
 
 

• Note: Tutorial # 1: 2D analysis of axial compressors 
       Friday, 14th August 2015: 1530-1615 hrs. 
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Cascade nomenclature 
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Losses in a compressor blade 

• Nature of losses in an axial compressor 

– Viscous losses  

– 3-D effects like tip leakage flows, secondary flows etc. 

– Shock losses 

– Mixing losses 

• Estimating the losses crucial designing loss control 
mechanisms. 

• However isolating these losses not easy and often 
done through empirical correlations.  

• Total losses in a compressor is the sum of the 
above losses. 
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Losses in a compressor blade 

• The overall losses in a turbomachinery can be 
summarised as: 
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2-D Losses in a compressor blade 

• 2-D losses are relevant only to axial flow 
turbomachines. 

• These are mainly associated with blade 
boundary layers, shock-boundary layer 
interactions, separated flows and wakes. 

• The mixing of the wake downstream 
produces additional losses called mixing 
losses. 

• The maximum losses occur near the blade 
surface and minimum loss occurs near the 
edge of the boundary layer. 
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2-D Losses in a compressor blade 

• 2-D losses can be classified as: 

• Profile loss due to boundary layer, 
including laminar and/or turbulent 
separation. 

• Wake mixing losses 

• Shock losses 

• Trailing edge loss due to the blade. 
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2-D Losses in a compressor blade 

• The profile loss depends upon: 

• Flow parameters like Reynolds number, 
Mach number, longitudinal curvature of the 
blade, inlet turbulence, free-stream 
unsteadiness and the resulting unsteady 
boundary layers, pressure gradient, and 
shock strength 

• Blade parameters like: thickness, camber, 
solidity, sweep, skewness of the blade, 
stagger angle and blade roughness. 
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2-D Losses in a compressor blade 

• The mixing losses arise as a result of the 
mixing of the wake with the freestream.  

• This depends upon, in addition to the 
parameters mentioned in the previous slide, 
the distance downstream. 

• The physical mechanism is the exchange of 
momentum and energy between the wake and 
the freestream.   

• This transfer of energy results in the decay of 
the free shear layer, increased wake centre line 
velocity and increased wake width. 
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2-D Losses in a compressor blade 

• At far downstream, the flow becomes uniform. 

• Theoretically, the difference between the 
stagnation pressure far downstream and the 
trailing edge represents the mixing loss. 

• Most loss correlations are based on 
measurements downstream of the trailing edge 
(1/2 to 1 chord length) and therefore do not 
include all the mixing losses. 

• If there is flow separation, the losses would 
include losses due to this zone and at its 
eventual mixing downstream. 
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2-D Losses in a compressor blade 
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2-D Losses in a compressor blade 
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2-D Losses in a compressor blade 

• Thus, in a simplified manner, we see that the 
profile loss can be estimated based on the 
momentum thickness. 

• The above loss correlation includes both 
profile and wake mixing loss. 

• If flow separation occurs, additional losses 
are incurred. This is because the pressure 
distribution is drastically altered beyond the 
separation point.  

• The losses increase due to increase in 
boundary layer displacement and momentum 
thicknesses. 

12 



2-D Losses in a compressor blade 

• In addition to the losses discussed above, 
boundary layer growth and subsequent decay of 
the wake causes deviation in the outlet angle.  

• An estimate of this is given as: 

 

• Hence, viscous effect in a turbomachine always 
leads to decrease in the turning angle. 

• The values of displacement and momentum 
thicknesses, depend upon, variation of freestream 
velocity, Mach number, skin friction, pressure 
gradient, turbulence intensity and Reynolds 
number.  
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2-D Losses in a compressor blade 

• In general, the loss estimation may be carried 
out using one of the following methods: 

• Separate calculation of the potential or 
inviscid flow and the displacement and 
momentum thicknesses. Subsequently, use 
the equation discussed previously. 

• Using a Navier-Stokes based computational 
code. Here the local and the integrated 
losses can be computed directly. 
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Mach number and shock losses 

• The static pressure rise in a compressor 
increases with Mach number. 

• Thus the pressure gradient increases with 
increase in Mach number. 

• This means that the momentum thickness and 
hence the losses increase with Mach number.  

• Increasing Mach numbers also lead to 
increase in shock losses. 

• At transonic speeds, the shock losses are very 
sensitive to leading and trailing edge 
geometries.  

15 



Mach number and shock losses 

• An estimate of the 2-D shock losses for a 
compressor must include: 

• The losses due to the leading edge bluntness 
with supersonic upstream Mach number. 

• The location of the passage shock can be 
determined from inviscid theories. If the shock 
strength is known, the losses can be 
estimated. 

• The losses due to boundary layer growth and 
the shock-boundary layer interaction are most 
difficult to estimate. The contribution however 
is small for weak shocks. 
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• One of the empirical correlations for the shock 
loss was given by Freeman and Cumpsty 
(1989).  

 

 

 

 

• This is valid for an incidence angle upto 5o. 

• These empirical correlations are however, 
derived using the 2-D assumption.  

• Actual flows are seldom 2-D in nature.   
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3-D flow in axial compressors 
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3-D flow in axial compressors 

• Flow in axial compressors considered so 
far was 2-D: no radial component of 
velocity. 

• Three dimensionality is caused by inviscid 
and viscous effects. 

• Some of the inviscid effects are due to  

– Compressibility and radial pressure gradients 

– Radial variation in blade geometry 

– Tip leakage flow 

– Presence of shock 

– Secondary flows 
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• These inviscid effects can be analysed using 
the inviscid governing equations. 

• The most dominant effect is the radial 
variation in velocity. 

• The viscous and inviscid effects compliment 
each other.  

• For eg. Tip leakage flow is essentially an 
inviscid effect, but its propagation and 
formation of leakage vortex is controlled by 
viscous effects. 

3-D flow in axial compressors 
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• The equations of motion for 3-D analysis of 
flow through turbomachines are highly non-
linear. 

• Analytical solutions exist for simple flow 
fields. 

• Depending upon the analysis, one may take 
up an axisymmetric analysis or a non-
axisymmetric analysis. 

• Axisymmetric analysis 

– Simple radial equilibrium analysis 

– Actuator disc theories 

– Passage averaged equations 

3-D flow in axial compressors 
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• Non-axisymmetric analysis 

– Lifting line and lifting surface approach 

– Quasi-3-D approach 

– Numerical solution of exact equations  

   (Euler or Navier-Stokes) 

• Axisymmetric analysis is used to predict 
the radial or spanwise variation of 
properties far downstream of the blade. 

• In the blade passage, cascade theories 
can be used to determine variation in 
properties at a given spanwise location. 

3-D flow in axial compressors 
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Axisymmetric analysis 
From Lakshminarayana, Chap 4, P 264 
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