* Recap: Lecture 8: 11t August 2015, 1530-1655
hrs.

— 3-D losses in an axial compressor
* Axi-symmetric versus non-axisymmetric analysis
* Secondary flows

— Physics of secondary flows
— Inviscid and viscous theories



* Secondary flows
— Occur in flow through curvatures.

— Flow through curved diffusers, compressor, turbine
blade passages.

— Flow in a direction perpendicular to the primary flow.
— Usually appears as a pair of counter-rotating vortices.

— Due to imbalance between the radial pressure
gradient and the centripetal forces.

— Different analytical methods for understanding
secondary flows: inviscid analysis: gyroscope analogy,
viscous analysis.

— Tip leakage flows and secondary flows are often
indistinguishable.
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Tip leakage flows and losses
— Tip clearance is a mechanical requirement.

— Account for about 30% of the total losses in
compressors and turbines.

— Tip leakage caused due to difference between the
pressure surface and the suction surface.

— Tip leakage flow when interacts with the primary
flow, results in a vortex.

— This vortex causes total pressure losses.

— Interaction of this vortex with the stator
downstream also causes losses in the stator.
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Tip leakage flows and losses
— Tip clearance varies with operation.

— Usually increases due to differential expansion of
the casing and the blades.

— Increase in tip clearance results in a corresponding
increase in losses.

— Compressor blades operating at off-design
conditions suffer increased losses due to
interaction of the tip leakage flow with the thick
boundary layer on the blade suction surface.



3-D flow Iin axial compressors
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3-D flow Iin axial compressors

Scrubbing

« Tip cross flow is
opposite in motion
to the rotation of
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« Blade tip scrubs
through casing
boundary layer
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3-D flow Iin axial compressors
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3-D flow Iin axial compressors
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3-D flow in axial compressors
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Tip leakage flows
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Radial equilibrium analysis

« Account for radial variations in
— Blade speed
— Axial velocity
— Tangential velocity
— Static pressure

« Large variations in these parameters
can occur as the flow passes through
a rotor.



