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Secondary circulation in fluid flow 

BY W. R. HAWTHORNE, Sc.D. 

Gas Turbine Laboratory, Massachusetts Institute of Technology 

(Communicated by Th. von Kdrman, For.dem.R.S.-Beceived 24 June 1950- 
Revised 13 October 1950) 

Secondary circulation appears after fluid with a non-uniform velocity distribution passes round 
a bend. It alters the character of the flow and is a source of loss. A general expression is 
developed for its change along a streamline in a perfect, incompressible fluid. 

The flow in bent circular pipes is analyzed and the theory is compared with experiments 
on bent pipes and rectanglar ducts. In bends the secondary flow is not spiral but oscillatory, 
the direction of the circulation changing periodically. 

The theory shows that secondary circulation remains unchanged if streamlines are 
geodesics on surfaces of constant total pressure. 

INTRODUCTION 

The existence of secondary currents in bends in pipes and rivers has been known for 
some time. James Thomson (1877) showed experimentally that a spiral flow could 
be obtained in a curved stream of water, the secondary motion at the bottom being 
inward and that at the top outward. The secondary flow was attributed of the effect 
of the centrifugal pressure gradient in the main flow acting on the relatively stagnant 
fluid in the wall boundary layer. 

Theoretical analysis of secondary flows has almost entirely been confined to the 
work of Dean (I927) for laminar flow in pipe bends of large ratio of bend radius to 
pipe diameter. Recently, however, Squire & Winter (I949) showed that secondary 
flows could occur in a bend through which a perfect, i.e. inviscid, fluid is flowing, 
as a result of a non-uniform distribution of velocity at entrance to the bend. Squire 
& Winter's work, which will be referred to again, suggested that a more general 
theoretical investigation of the rotational flow of a perfect fluid in three dimensions 
might yield useful results, if attention was concentrated on the secondary circulation, 
or the component of vorticity in the direction of flow. 

GENERAL THEORY 

The theory will be presented for a steady, inviscid, incompressible fluid in motion 
in the absence of body forces. Representing the velocity vector by V and its scalar 
by q, the vorticity vector a = curl V. (1) 

The component of the vorticity resolved in the direction of flow, whose scalar 
will be presented by 6, gives rise to a secondary circulation which, when measured 
around a stream tube of cross-sectional area dA, has a magnitude = idA. Since 
qdA is the constant volume flow along a stream tube, the secondary circulation 
around any given stream tube will be proportional to 6/q. 

The vorticity may be resolved along and normal to a streamline to give 

(QV) V 
= 

V along a streamline, 
\ V.V[ q 

[ 374 I 
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Secondary circulation in fluid flow 375 

and (V x>2) V normal to a streamline. 
(V. V) 

Since the divergence of the curl of a vector is zero, 

divQ = 0. (2) 

Resolving the vorticity into its two components 

q V x(V x ?L0 
div6 V-div (V(V) 

.~~~~~ 
(V V 

or, expanding, 

gdivV+V.grad -V x (V x Q).grad d- !divV x (V x Q) = 0. (3) 
q q V. V q 

Now divVx (VxQ)_(VxQ).curlV-V.curl(VxQ) (4) 

is an identity. The first term on the right-hand side contains two identical vectors 
Q and curl V and is therefore zero, so that, if curl (V x Q) is zero, the entire right- 
hand side becomes zero. 

For the type of flow specified the streamlines and vortex lines lie in a surface of 
constant total pressure po, or a Bernoulli surface. It may be shown (Lamb I932) that 

VxQ =grad?- =grad(p+ (5) 
p2 

consequently curl (V x Q) = 0. 

The continuity relation is div V = 0; hence, the first and last terms in equation (3) 
disappear leaving q - -V x (V x Q2). grad (V. V) (6) 

V. grad~ q=(6 

Now grad (V. V) _ 2(V. V) V + 2V x curl V (7) 

is an identity, which when substituted in equation (6) yields 

V . grad _ V x (V x Q). 2(V. V) V (8) V.gad- (8) 

Another form of this relation which may be derived by a similar procedure is 

div (Q . V) V = div (V. V) Q2, (8a) 

or V. grad (Q . V) = Q . grad (V. V). (8b) 

The left-hand side of equation (8) is proportional to the product of the velocity 
and the rate of change along a streamline of the secondary circulation. The triple 
product on the right-hand side of equation (8) is proportional to the product of the 
velocity, a vector (V x Q) normal to the Bernoulli surface containing the streamline 
and hence normal to the velocity vector, and a vector representing the acceleration. 
The acceleration may be resolved into two components, one tangential to the 
streamline and the other along the principal normal. The acceleration along the 
principal normal is q2/R, where 1/R is the curvature of the streamline. If 0 is the 
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376 W. R. Hawthorne 

angle between the directions of the principal normal and the normal to the Bernoulli 
surface, then the only component of acceleration entering into the triple product is 
sin q . q2/R, the other two components having the directions of (V x Q) and V. 

Hence equation (8) becomes 

V. grad 6 = _ 2 | grad (po/p) I sin 0 q q(9 
Integrating along a streamline 

(g2(ql-2fAgrad(-) -'id8 (10) 

where ds is an elementary arc of the streamline. 
Now (sin I/R) = ( 1/R), the geodesic curvature of the streamlines on the Bernoulli 

surface. The sign of the change in secondary circulation depends on the direction 
in which the streamline is turning away from the plane containing the vectors 
V and (V x Q2). If the streamline turns towards the direction of the vortex lines, then 
the geodesic curvature (or 0) is negative; if away, 0S is positive, the positive direction 
of the vorticity being determined by the usual right-hand screw rule. 

By definition 1 ds 
R ds' 

where dO is the angle between tangents to the streamline at points arc length ds apart; 
hence equation (10) may also be written 

(q)2-(q)r ~2f lgradpo/p I sinq0S- 

An important result of this analysis is that if 0 = 0 or the direction of acceleration 
(or pressure gradient) lies in the plane containing the velocity vector and the normal 
to the Bernoulli surface, there is no change in secondary circulation along the 
streamline. Hence streamlines along which the secondary circulation remains 
unchanged are geodesics on the Bernoulli surface. 

SOME EXAMPLES SOLUBLE BY SUPERIMPOSITION 

The simplest examples to which this analytical result may be applied are those in 
which the initial flow has a uniform pressure and a velocity varying in only one 
direction. Such a flow may exist in the boundary layer of a large straight duct or in 
an open channel whose width is large compared to its depth. The Bernoulli surfaces 
are planes and the total pressure varies in one direction only. If the stream enters 
a bend whose plane is parallel to the Bernoulli surfaces, the angle q between the 
direction of normal acceleration and the normal to the Bernoulli surface is initially 
ff, so that a secondary circulation is created in the bend. Since each particle of 
perfect fluid retains its original total pressure and the particles are carried with the 
secondary flow, the Bernoulli surfaces are distorted as the fluid passes downstream 
so that the original unidirectional feature of the total pressure variation is lost. 

Equation (11) is not sufficient to determine the flow, but if certain assumptions 
are made, approximate solutions may be obtained by estimating the secondary 
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Secondary circulation in fluid flow 377 

vorticity. These assumptions are that the secondary flow occurs in planes which are 
normal to the average direction of flow, that the secondary vorticity is normal to 
these planes, and that the secondary flow may be treated as a two-dimensional plane 
flow superimposed on the main flow. To obtain the secondary vorticity from 
equation (11) the behaviour of the Bernoulli surfaces and streamlines must either be 
estimated or calculated by some step-by-step process. 

In the flow of a boundary layer described above, the Bernoulli surfaces are 
initially planes and are distorted as the flow proceeds round the bend. Under certain 
conditions the distortion of the Bernoulli surfaces may be small, and I gradpo/p I and 

0 will retain their initial values. If the variation in q along a streamline is also small, 
and noting that initially 

gradpo/p = grad (p/p + 1q2) = qgradq = qQo, 

where Q is the initial vorticity, equation (11) gives for the vorticity downstream 

62 =-2Qo6, (12) 

where e is the angle of turn in the bend. These are the assumptions and the result 
obtained by Squire & Winter (1949) using a different analytical approach. 

A similar method of superimposition may be used for the flow around an obstacle, 
such as an aerofoil, when the velocity varies only in the direction of the span. Then 
equation (11) yields for the downstream vorticity 

(q -2Qq q2d0 (13) 

where the integral may be evaluated along a streamline of the unperturbed, i.e. two- 
dimensional flow around the obstacle. Equation (13) shows that a symmetrical 
obstacle such as a cylinder or strut will create a secondary vorticity due to its 
thickness alone. The secondary vorticity will result in induced drag effects which 
may be reduced by minimizing the integral in equation (13). This is a possible basis 
for a method of designing thick struts for use in boundary layers. 

FLOW IN A BENT CIRCULAR PIPE 

In many instances the distortion of the Bernoulli surfaces during the flow round 
the bend cannot be neglected. The following example shows how equation ( 11) may 
then be used to obtain approximate solutions. Suppose that an initial flow with 
uniform pressure and a velocity varying in one direction only enters a bent circular 
pipe of diameter d. The entry velocity and Bernoulli surfaces are shown in figure 1 a 
and b respectively. If the plane of the bend is parallel to the initial Bernoulli surfaces, 
then 0 is initially L7T, and after a small turn in the bend a secondary circulation will 
appear in the direction shown by the arrow in figure 1 b. 

The secondary flow carries with it particles, identified by their total pressure, 
giving rise to a spiral motion in the bend. After a small turn in the bend the diagram 
showing the contours of total pressure over a cross-section of the pipe will no longer 
appear as in figure l b but will be distorted in the direction of the arrow as a result 
of the spiral flow. 
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378 W. R. Hawthorne 

As a first approximation it will be assumed that the distortion of the contours of 
total pressure is a simple twist of the diagram through an angle ac to give the picture 
shown in figure 1 c. If this happens, the normal to the Bernoulli surfaces will have 
turned through the angle ac, but the normal acceleration of the fluid will be still 
directed approximately towards the centre of the bend. Hence, the angle 0, which is 
initially n7T, now will be ( a- ), and this value may be substituted in equation (11) 
givingdO(4 

2 gradpolp I cos a - (14) 
q q2 

Assuming that either 6 is uniform over the cross-section or that a suitable mean 
value may be defined whose product with the cross-sectional area of the pipe gives 
the total circulation, the clockwise circumferential velocity v at the outer diameter 
of the pipe is given by v=I- d. (15) 

a 

r- 4---1 7 

-~~~~~~~- 
ab -s c io - 

const. total (b):section a-a 
(a,) pressure lines. 

w a \ 

(c): section c-c 

FIGURE 1. The effect of a bend on flow with a velocity gradient in a circular pipe. In (a) the 
surfaces of constant total pressure are horizontal planes as shown in (b). At section 
c-c these planes have turned through angle 'a (c). 

The ratio of this circumferential velocity v to the velocity normal to the cross- 
section of the pipe, which is approximately q, gives the ratio of the linear dis- 
placements of a particle in the secondary- and main-flow directions. In an elementary 
turn of angle dO in the bend, the angular displacement in the secondary-flow 
direction, using the notation of figure 1 c, will be da. The linear displacements are 
approximately the products of dO with r, the radius from the centre of the bend to 
the particle, and of dac with 'd the radius of the pipe. Hence 

'ddac v d fOIgradPO/pI0sO (16) 
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Secondary circulation in fluid flow 379 

Equation (16) may be solved readily if the bracketed term in the integral can be 
evaluated. For the simplified scheme shown in figure 1 in which the maximum 
velocity is U., the minimum zero and the velocity gradient is linear, initially 

q2 = 
I 

I gradq =-UM (17) 
q2 q qd' 

If this term and the velocity q remain unchanged on any streamline, then by, 
equation (14) the vorticity is uniform over the cross-section and the use of equation 
(15) is justifiable. To measure the turning the easiest particles to follow are those of 
highest total pressure, so that Um may be substituted for q in equation (17) and 
r= (R + d sin a), where R is the radius of the bend to the centre -of the pipe (pipes 
bent on a circular arc are assumed). 

Substitution in (16) and the differentiation with respect to 0 yields 

I d20a cos ac Zda2 

( 
CJ +smn )o 2(V 2t+ sin)(c) A-csc} 

1 d /dcsi2 2cosc~ fdc'A2 

or -~~~~~~~~~~~= Cs 

2R dciVd0 (21 - - =cosc. (18) 

d +sinc a d +sin ca 

Since (dacldO) = 0 when 0 = 0, integration of this gives 

da (21 +sina log, I+ORsina (19) 

If R is large compared to the pipe diameter, equation (16) becomes approximately 

/d\i d2cos 
dJd2a = Cosa, (20) 

which is analogous to -a = cos, (21) 

the equation of motion of a pendulum of length L making an angle oa with the 
horizontal. 

Hence the fluid in the bend will oscillate between a = 0 and a = iT with a period or 
bend deflexion for a complete oscillation approximately equal to 21T/\I(R/d). The 
secondary circulation which is analogous to the kinetic energy of the pendulum will 
also oscillate with the same period, passing through zero after each n J(d/R) radians 
of turn, approximately. 

Equations (16) and (17) show that particles with smaller velocities than U. have 
larger values of (dl/dO) and therefore tend to overtake the particles of higher total 

pressure. The assumption that the Bernoulli surfaces merely twist is, hence, only an 

approximation, as is the use of the largest total pressure particles to describe the 
average motion of the surfaces. Any alterations in the value of the bracketed term 
in the integral of equation (16) due to these effects or to the effects of friction, such 
as a decrease in the total pressure gradient, change the value of the period, as well as 
the magnitude of the secondary circulation. 
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380 W. R. Hawthorne 

EXPERIMENTS WITH CIRCULAR PIPE BENDS* 

Tests were made by connecting circular pipes of about 6in. inside diameter to 
a ventilating fan. The total pressure at inlet to the bent pipe was adjusted by means 
of screens of varying thickness to give an approximately linear velocity gradient. 
Two pipe bends were used, one of 68-in. inside diameter, a deflexion of 90?, and 
radius 9 9 in. giving R/d- 15. The other was 6 in. inside diameter, 180? deflexion, 
and radius 30 in. giving R/d = 5. The only measurements were of total pressure, 
obtained by pointing a pitot tube, 8 in. outside diameter, in the direction which gave 
a maximum reading. To avoid the necessity for cutting holes in the pipe, the bends 
and straight pipes were cut so that Pitot tube surveys were always made at the outlet 
cross-section, successive sections of pipe being added to get readings further 
downstream. 

Results from the 900 bend are shown in figure 2 as lines of constant total pressure 
on cross-sections at inlet and outlet from the bend and after straight pipes of varying 
lengths downstream. At outlet from the bend the Bernoulli surfaces have turned so 
that the particles of maximum total pressure have twisted through an angle of about 
110? towards the outside of the bend. The predicted tendency for the particles of 
lower total pressure to twist more rapidly than those of higher total pressure is 
demonstrated by the crowding of total pressure lines at the top of section 2, figure 2, 
and their separation at the bottom. This is a partial explanation for the subsequent 
motion of the lower total pressure streamlines towards the centre of the pipe shown 
in sections 3 to 6, figure 2. The results are shown in table 1. Good agreement between 
theory, equation (19), and experiment at station 2 indicates the small effect of 
friction in the bend, confined mostly to the wall boundary layer. Other effects of 
friction are shown by a decrease in the rate of twist, dl/dx, in the straight pipe 
downstream and a tendency for the total pressures to become more uniform, although 
the general stream pattern remains clear. The overall tendency of the low-velocity 
fluid originally on the bottom wall to move to the centre of the pipe is remarkable. 

TABLE 1 

station 2 - 3 4 5 6 
distance, x (in.) 0 - 16 44 60 94 
oc (degrees) 110 (113)* 240 440 550 730 
twist, daldx (degrees/in.) 9*2 (9-3)* - - 5*0 

* Figures in parentheses are solutions of equation (19). Reynolds number based on maximum 
velocity = 200,000. 

The results of the tests on the 180 bend R/d = 5 are shown in figures 3, 4 and 5. 
Figure 3 illustrates the test procedure and the total pressure contours at inlet to the 
bend. Pitot traverses were made every 30? of bend, and after a section of straight 
pipe 25 in. long placed downstream of each 3O? section of the bend. The total pressure 
contours are shown in figure 4. Below that obtained after each 300 section is placed 
the corresponding contour after 25 in. of straight pipe. In this way the displacement 

* The experiments described in this section were done by Hans P. Eichenberger, 
Dipl.Ing.ETH, graduate student at the Massachusetts Institute of Technology, whose help 
and comments are acknowledged. 
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FIGuRE 2. Results from 90' bend tests. Rld 1-5, d 63 in. 

test sections 
00 

total pressure 2 0 in. H20 300 

-4~~~~~0 

9 - 

\ 0 120 

upstream 0) 10 / 

1500 

1800 

FIGuRE 3. Test procedure used on. bent circular pipe, R/d _ 5 and inlet total 
pressure distribution. 
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382 W. R. Hawthorne 

and rate of turning were measured every 30? of bend. Figure 4 shows that the 
circulation is anti-clockwise up to 90? and then becomes clockwise from 120 to 180?. 
The total pressure contours remain nearly parallel lines, to some extent justifying 
the use of the simplified theory of the previous section. The oscillations of the fluid 
in the bend are shown in figure 5, which summarizes the results by showing the 
angular displacement as (r7T - a) and the secondary circulation as twist per 25 in. 

300- 600 90? ~~~04)~~~~ 

\& ~~~~~~~~*< ~ ~ ~ ~ ~~ 05 088 

200 1500 1800 

2~~~~~~~~~~1 

17 [ 

15 09 12~~~0. . 

X ~~~~ 10 'A 

FIGURE 4. Results of tests on bent circular-pipe, Bld =5. Sections every 30? of bend 
with, below, sections ta,ken after 25 in. of straight pipe. 
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Secondary circulation in fluid flow 383 

of straight pipe, both measurements referred to the particles of highest total pressure. 
The solution of equation (19) is the broken curve shown in figure 5. 

Although the damping effect of friction on the oscillation is large, there is 
qualitative agreement with the simplified inviscid fluid theory. To obtain closer 
agreement with experiment, the theory can be modified. Allowance for wall friction 
accounts for most of the change in amplitude of the displacement. The differing rates 
of twisting of the various streamlines tend to decrease the period and the decrease of 
the total pressure gradient from its initial value tends to increase it. 

While the initial shear flow is the result of viscous effects, it is of interest that 
friction in the bend reduces rather than promotes the secondary circulation. 

6 1 //// j,100 

600 * 

3 0 

30 W60 9o 120 / lS00 1800 

\~~~ 

-600I-\_ 

FIGURE 5. Effect of deflexion on displacement and turning rate of highest total pressure 
particles in circular pipe bend, Rld = 5. Curve 1, measured turning angle a; curve 2, 
calculated a.; curve 3, velocity of turning. 

EXPERIMENTS WITH RECTANGULAR BENDS 

Similar tests were made by W. Joy (I950) with a bent rectangular duct 5 in. x 10 in. 
The total pressure at inlet was adjusted to give the symmetrical velocity distributions 
shown in figure 6. Three constant radius bends were used; one of 7 in. radius to the 
centre line and 90? deflexion, both the others were of 15 in. radius, one being of 90? 
and the other of 1800 deflexion. The 10 in. long side of the rectangular section was 
perpendicular to the plane of the bend. Total pressures were measured with a Pitot 
tube inserted through slots in the wall at various sections of the bend and the 

Vol. 206. A. 25 
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FIGU RE 6. Velocity distributions in 90? bend of 5 x 10 in. rectangular duct; bend 

radii: top, 7 in.; bottom, 15 in. 
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FiGuR.E 7. Velocity (ft./sec.) distributions in 9Q0 bend of 5 x 10 in. duct; bend radius 15 in. 
at various stations in the bend, 300 apart, and in a straight ducit downstream, 12 in. apart. 
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Secondary circulation in fluid flow 385 

straight duct downstream. Static pressures were measured with wall taps. The 
results shown in figures 6, 7 and 8 are given as velocity contours, but the effect of 
static pressure is so small that the total pressure contours practically coincide with 
them. 

sta. ? sta. sta ?- 
40 ~ ~~~~~~070 bO 

70 60 50605 
8 80.~80 4040 

40L)~~~~4 
70 62A 

960 

i n - 

sta. sta. sta 12> 

T_ ~~~~~~80~ 10OiniJ70 60 0 ( 0 
50 

45 
70~~~~~4 

5060~~~~~~~~~~~~~~7 
4 5 70 

70~~~~~~~7 

FIGURE 8. Velocity distributions in 180Q bend of 5 x 10 in. duct; bend radius 15 in. at various 
stations in the bend, 300 apart, and downstream, 12 in. apart. Direction of secondary 
flow reverses at station 8. 

As the fluid moves around the bend, the Bernoulli surfaces move from a horizontal 
to a vertical position, each pair joining up and the higher total pressure particles 
moving towards the outside of the bend, figure 7. After further deflexion the surfaces 
of the higher total pressure close round the fluid of low total pressure, station 7, 
figure 8. The fluid of higher total pressure continues to rotate pushing the low total 
pressure fluid until it separates into two regions located roughly at the centres of 
the top and bottom halves of the duct, station 8, figure 8. If the bend continues, the 
direction of the circulation changes, station 9, figure 8, and the surfaces of total 
pressure return towards their original positions, station 10, figure 8. The configura- 
tion of the fluid in the duct downstream develops from the point in the cycle at which 
the bend terminates. The fluid originally on the top and bottom walls finally appears 
downstream in two 'islands' in the centre of each half of the duct, figure 7. 

The effect of bend radius is shown in figure 6. After 90? deflexion the Bernoulli 
surfaces have twisted further in the 15 in. bend than in the 7 in. bend. 

Analyzed by a simple inviscid fluid theory similar to that given for the circular 
pipe, an agreement between experiment and theory nearly as good as that for the 
circular pipe is obtained. 

25-2 
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386 W. R. Hawthorne 

DISCUSSION 

A comparison between reported measurements of pressure losses in pipe bends 
reveals considerable variation in the loss coefficients obtained by different investi- 
gators. Furthermore, as the bend radius ratio is changed, keeping the deflexion 
constant, the bend loss coefficient varies in an almost periodic fashion. Results of 
tests on a 900 bend by Davis (I9IO) are shown in figure 9. It is possible that these 
variations are due to the oscillatory changes in the secondary circulation discovered 
here. The discrepancies between the results of different investigators are probably 
due to differing velocity distributions at inlet to the bend. 

0Q8 

0 6_ 

0-4- 

02 

-(RID) 
FIGuRE 9. The effect of bend radius on the loss coefficient , in excess of that in 

straight pipe for 900 circular pipe bends. After Davis (I9IO). 

Although frictional effects become important in the flow downstream of the bend, 
any discussion would consider first the inviscid fluid theory. In the inviscid fluid 
theory if, as is plausible, there is no further change in secondary circulation in the 
downstream flow, then the streamlines must be geodesics on the stream surfaces. 
Limiting consideration to this type of flow, it may be shown that if the flow con- 
ditions do not vary in the downstream directions, i.e. the components of gradip, etc., 
in the downstream direction are zero, then the Bernoulli surfaces are circular 
cylinders, coinciding with the surfaces of constant pressure and constant velocity 
and the streamlines are helices. If the flow conditions show a pattern which remains 
unchanged except in orientation, resembling somewhat the results at stations 
4, 5 and 6 of figure 2, then the Bernoulli surfaces coincide with surfaces of constant 
pressu re and velocity. These results may be readily obtained, since in both types of 
flow the directions of grad p and grad po must coincide. 

The general relation for the change in secondary circulation along a streamline 
may also be of particular interest in meteorology and in flow in rivers. It may offer 
some insight into the behaviour of boundary layers and the phenomena of transition 
from laminar to turbulent flow. 
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The aerodynamic drag of a free water surface 
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Revised 15 December 1950-Read 15 March 1951) 

The drag exerted by wind on a water surface has been measured in a tunnel 7.5 cm. wide and 
7 m. long in which winds up to 14 m./sec. can be made. The waves thus formed are similar to 
those seen at sea. A device increases the effective fetch and therefore the size of the waves. 
The drag is measured by the slope of the mean water surface. The shear-stress coefficient 

=2 _ rIpu2 increases nearly linearly with wind speed, and the drag therefore increases nearly 
with the cube of the speed. There is a not unsatisfactory agreement with field results of shear 
coefficient, when the wind velocity is extrapolated to the greater height at which it is usually 
measured over the sea. It is thought that this agreement between the drag of small laboratory 
waves and large field waves may show that the mechanism for drag is not controlled by the 
wave size or speed, but perhaps by the tiny wind ripples. 

The variation of wind speed with height has been measured. The profiles sometimes show 
anomalies in the zone up to about 8 cm. above the crests, there being slow layers of air between 
faster ones. The height of the anomalous zone increases as the waves become higher. Above 
8 cm. the usual rough boundary law holds good. An empirical law is given for the shear stress 
as a function of the speed of the surface layer of water. 

1. INTRODUCTION 

When the wind blows over the sea, waves form on the water surface, and the drag 
slows the air immediately above to form a boundary layer. The conditions near 
the interface are important because they affect the transfer of heat and water 
vapour in the atmosphere, and the wave characteristics are of interest to the 
oceanographer, sailor and engineer. Of these boundary measurements the variation 
of wind speed with height above the sea has been investigated by Wust, Shoulejkin, 
Montgomery, N. K. Johnson, Roll, Sutcliffe and Bruch; and the slope of the mean 
sea surface caused by the drag has been measured by Palmen, Ekman, Hela' and 
Corkan. There is, however, a large scatter in the values of the shear-stress coefficients 
Ya- T/pu2 found in these field experiments, where T =shear stress, p = air density, 
ua= wind speed at height a above mean water-level. There are several possible 
reasons for the uncertainty: the difficulties of operating instruments of the 
necessary precision from small boats in rough seas; the tidal and seiche movements 
of the whole body of water masking the slope caused by the drag; the rarity of 
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