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SECONDARY FLOWS: THEORY, 0) 8044 

EXPERIMENT, AND APPLICATION IN 

TURBOMACHINERY AERODYNAMICS 

J. H. Horlock 
Cambridge University, England 

B. Lakshminarayana 
Pennsylvania State University, Pennsylvania 

INTRODUCTION 

Secondary flow is produced when a streamwise component of vorticity is de
veloped from the deflection of an initially sheared flow. Such secondary flows 
occur when a developed pipe flow enters a bend, when a sheared flow passes over 
an airfoil of finite thickness or an airfoil of finite lift, or when a boundary layer 
meets an obstacle normal to the surface over which it is flowing (e.g. a wind 
blowing past a telegraph pole). 

One of the most important engineering aspects of secondary flow occurs in 
axial turbomachinery aerodynamics, where boundary layers growing on the cas
ing and hub walls of the machines are deflected by rows of blades, stationary and 
rotating. The authors' work in the field of secondary flow has been concerned 
largely with measuring and attempting to describe analytically these difficult flow 
problems in turbomachines, and this review concentrates on that area of the 
subject. 

However, it is important for the fluid mechanicist to realize that the analysis 
of secondary flow has now reached the status of an important "classical" area of 
fluid mechanics comparable to potential flow theory. The development of the 
subject can be traced in a number of papers and reviews: Squire & Winter (1951), 
Hawthorne (1951,1954,1955,1961,1965,1966,1967), L. H. Smith (1955), Light
hill (1956), Marris (1963), Laksbminarayana & Horiock (1963), Hawthorne & 
Novak (1969). 

We do not attempt here to provide a review of these reviews, but show instead 
how some of the major results may be applied in turbomachinery design and what 
limitations still exist in secondary-flow analysis. 

We trace the development of secondary-flow theory and its application in the 
following way, thinking in terms of a sheared flow produced near the casing or 
hub Wall of a turbomachine and deflected by a row of blades. 
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248 HORLOCK A LAKSHMINARAYANA 

First, expressions are given for the streamwise vorticity generated along a 
streamline in a duct formed by the blade surfaces. 

Then solutions for the secondary velocity fields are discussed. They have been 
classified by Hawthorne (1967). The two parameters of importance are the mag
nitude of the entry shear and the deflection of the flow. Thus four flows may 
be considered: 

(i) small shear, small disturbance in which the Bernoulli surfaces are undis
torted and the disturbance is irrotationa1; 

(ii) small shear, large disturbance in which a primary irrotational flow convects 
the Bernoulli surfaces and the vortex filaments (this is referred to as the "secon
dary flow approximation" and is the one most commonly used to describe secon
dary flows in turbomachines); 

(iii) large shear, small disturbance in which the disturbance is rotational and the 
Bernoulli surfaces are distorted (an example of this approximation is the shear 
flow past thin airfoils-this approach has not yet been widely used in turbo
machinery aerodynamics and we briefly review it); 

(iv) large shear, large disturbance, where very few solutions exist. 

We discuss solutions of type (ii) in detail and type (iii) briefly. 
Next we compare some of the analyses with carefully designed experiments on 

two-dimensional cascades, single three-dimensional twisted blade rows (station
ary and rotating), and turbomachinery stages of two or three rows. The effects 
of various flow and blade parameters on secondary flow and losses are also dis
cussed. 

Finally, we discuss what can and cannot be done in predicting the secondary 
flows in multistage machines. 

EQUATIONS FOR THE STREAMWISE VORTICITY 

In this section we give general equations for the streamwise vorticity developed 
along any curved streamline, within a bent duct. We then derive simpler equations 
for a particular coordinate geometry. 

Streamwise Vorticity-A General Statement 

For an incompressible flow that has velocity V (scalar V) and vorticity (,) a purely 
kinematical relationship depending only on the continuity equation (div V =0) 
has been given by Marris (1963) as a generalization of earlier work by Haw
thorne (1951), 

(V· V) (V.(,)) = V� (�) V2 as v 
2 s 

= - [s X (V X (,) ·n] - _. v x (V x (,) VR V 

(1) 

Here s is the unit vector tangent to the streamline of local radius of curvature R 
and n is the unit vector along the principal normal to the streamline (i.e. in a 
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SECONDARY FLOWS 249 

direction away from the center of curvature, opposite to that of the centrifugal 
acceleration V2/ R), so that s, D, and b form a right-handed system (Figure la) 
where b is the unit vector along the binormal; and � and TJ are the components of 
vorticity in the directions sand n respectively. Since - [sX(VXw)·n}/Vis equal 
to the scalar component 11 of the vorticity along the principal normal, equation 
(1) may be written 

!.- (�) = _ � _ s· V X (V X (,» 

as v VR V2 
(2) 

Only at this point do we need to introduce a momentum equation. In laminar 
flow of a fluid with kinematic viscosity v, it is 

VP V X(,) = - - V V2V 
P 

where P is the total pressure and p the density. Equation (2) then becomes �(�) 
= 

_ �+ vs·r:;t(,) 
as v VR V2 

/ 

2TJ VV2� �--+--
VR V2 

/ 
ds 

/ / 
/ // 

/y Y 7d9 

Figure 10 Development of streamwise vorticity-general coordinates. 

(3) 

(4a) 

(4b) 
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250 HORLOCK '" LAKSHMINARAYANA 

A similar equation has been given by Hawthorne (1965). (If we can use an eddy 
viscosity v. in turbulent flow, then equation (4b) can be used with v. replacing v.) 

Equation (4a), given by Marris, is a general statement for the growth of 
secondary vorticity. An alternative form frequently used is obtained by substitut
ing v" = ! VP/p! sin fJ, where fJ is the angle between the perpendicular to the 
Bernoulli surfaces and the principal normal, into equation (4b), giving 

:
s
(�)��[ _ 2 /:P /Si;fJ + JlV2�J (5) 

We have presented the streamwise vorticity equations for incompressible flow. 
More complex expressions for this vorticity, which are required in compressible 
flow, have been given by Hawthorne (1966) and Loos (1956) but are not repro
duced here. 

Simpler Derivations and Approximate Forms for the Streamwise Vorticity 

Simpler statements of the secondary-vorticity equations are obtained from the 
more familiar equation for the vorticity in incompressible laminar flow. 

(V. V)(,) = «,). V)V + vV2(,) 

obtained by taking the curl of equation (3) as a starting point. 
The streamwise component of this equation is 

(6) 

a� V" av av av 
V- + "�c-+,,-+r-+ VV2c (7) 

as R as an ab 

where r is the vorticity in the b direction, and s· V'(,) has again been written as 
V2�. Since ,, = aV/ab and r= -(av/an+V/R), it follows that 

� (�) � _ �+ vV2e 

as V VR V� 
which is Marris's equation, (4b). 

Similarly, the equation for" in the n direction is 

a vr 
- (V,,) � - + v (V2,,) 
as T 

(8) 

in a flow of small deflection, where T is the radius of torsion of the streamlines. 
Squire and Winter's expression for secondary vorticity can be derived by as

suming that II = 0, V is constant, and the radius of the streamline R is the same as 
that of the bend, so that Rd8=ds, where d8 is the elementary deflection of the 
streamline in the bend. Then equation (3) becomes 

Be 
- = - 2" 
a8 

(9) 

Louis (1956) has provided an interesting development of the basic equations to 
allow for the effect of viscosity. He considers a shear flow decaying owing to 
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BLADE B-----

BLADE A 

Figure Jb Cascade geometry. 

viscous action as it is turned. He neglects the direct viscous effects on the stream
wise vorticity in (7), and assumes that the effect of viscosity is to change 7/ in (8). 
He eliminates the term on the right-hand side of (8) by assuming that the viscous 
action is the same as that in an undeflected two-dimensional flow (e.g. from an 
empirical law such as the decay of a turbulent wake, a two-dimensional solution, 
V 2O(S, b), is known). If Vo is the local velocity for inviscid potential flow through 
the bend, with unity velocity upstream, then Louis shows that 

� J' 1 aV2D ds J' [J' aV2D avo ] ds 
- = - 2 - -- -+2 V2D -- --ds - (10) 
Vo 0 Vo ab R o o ab as RV02 

Another approximate expression for the streamwise vorticity developed in a 
cascade (Figure 1b) has been given by Laos (1953) and is perhaps the most useful 
of all to the turbomachinery designer. In considering the deflection of a sheared 
flow of initial vorticity 7/, between a flow angle a, at inlet to a cascade and a flow 
angle a, at exit, Laos assumes the axial velocity to be unchanged, so that V 
= V, cos aI/cos a from continuity.' Using this relation in equation (4) he obtains 

7/1 [ sin 2a2 - sin 2al] 
�2 - �l = a2 - al + -------

cos al cos a2 2 
)"'2 is taken to be less than "'1, as in a compressor cascade. The flow is inviscid. 

(11) 
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252 HORLOCK &; LAKSHMlNARAYANA 

Again the small shear, large deflection approximation is implied, since it is as� 
sumed that the Bernoulli surfaces do not rotate, and the continuity equation is 
used within each plane. 

Stream wise Vorticity in Rotating Channels 

It is important for the turbomachinery designer to determine the streamwise 
vorticity in rotating as well as stationary channels. Marris (1966) has shown that 
equation (1) is valid in a rotating system if the unit vectors, velocities, and their 
curl are referred to the relative coordinate system. This is because the kinematic 
relationship must be the same, even though the momentum equation will be 
different. Thus equation (1) may be written, for incompressible flow in a channel 
rotating with angular velocity Ob (see Marris 1966, as a generalization of earlier 
work by A. G. Smith 1957), 

(W.V) (W'fJ)') = _2_[s, X (W X fJ)')·n'J - �'V X (W X fJ)') (12) 
W2 WR' W 

where W is the relative velocity, fJ)' = VXW, and 5', 0' are unit vectors referred to 
the relative streamline of radius of curvature R'. For inviscid flow the equation of 
motion is 

where 

VI 
-- =WXfJ) 
p 

VI - = W X (Ill' + 20b) 
p 

(13) 

(14) 

If equatioo (14) is used in equation (12) (viscosity being ignored) then it may be 
shown that 

(IS) 

where �' is the component of fJ)' in the streamwise direction. 
By writing fJ)'=fJ)-Z,ob, we can express equation (15) in a form given by A. 

G. Smith (1957): 

�(�w) = _ _ 2_ ] VI I sin {3 + 2�1 vI I cos 0 (16) 
as' W W2 R' P W2 p 

where � is the component of absolute vorticity III in the direction s' and 0 is the 
angle between V 1/ p and �. 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

97
3.

5:
24

7-
28

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

In
di

an
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
- 

M
um

ba
i/ 

B
om

ba
y 

on
 0

8/
18

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



SECONDARY l'LOWS 253 

Again, these expressions for streamwise vorticity (equations 15 and 16 respec
tively) may be obtained more simply from the vorticity equation in rotating co
ordinates. The method is similar to that indicated in the earlier section (see Hor
lock & Lakshminarayana 1973). 

For small rotation of the Bernoulli surfaces in a rotating cascade of blades, � 
and {J are approximately 7r /2 and only the first term is important. Then 

(17) 

where ()' is the relative deflection. Thus if the absolute vorticity perpendicular to 
the relative streamline is l1Wl' and the velocity changes little in a small (relative) 
deflection, then 

(18) 

This is equivalent to the simple Squire and Winter statement for flow in sta
tionary coordinates [equation (9)]. 

THE SECONDARY-FLOW APPROXIMATION 
(SMALL SHEAR, LARGE DISTURBANCE) 

First we discuss solutions for the secondary flow based on the approximation of 
small shear and large deflection, and then some limitations of this approach. 

Secondary Velocities and Angle Changes in a Cascade 

The flow through a bend or a cascade of blades may be treated along the lines 
already described in the introduction. A uniform primary flow convects, stretches, 
and twists the vortex filaments. The secondary flow is regarded as a perturbation 
from the shear flow on undisturbed Bernoulli planes (i.e., transverse to the main 
primary flow direction) and the streamwise vorticity is obtained from the equa
tions already given. Within the channel formed by the blades (Figure 1 b) the 
secondary velocities (D, w) may be obtained from the secondary vorticity if it is as
sumed that av/an, aw/az»au/as. (Note that we are now taking nand z as 
rectilinear coordinates at some location in the channel.) Then the continuity equa
tion is 

so that 

av ow 
- + -=0 
an az 

av aw 
-�=---= v-zv,. 

az an 

(19) 

(20) 
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where w= -iJtf;/iJn, D=iJ1f;/iJz, '" being the secondary stream function. For a 
cascade channel (Figure Ib) at any section s, the cross section (width S'Xlength 
21, where S' = S cos (2) is rectangular and a solution to the equation has been 
given by Hawthorne (1955), for the Squire and Winter solution �2= -2D.duJdz, 

where 

mm '" = L: "'''' (z) sin -
1ft S' 

S8eS' {Sinh m7rZ/ S' f I dUl . m7r(1 - A) 
'" = --- smh rill. 1ft 

(m7r) 2 sinh m7rlIS' • rill. S' 

(21) 

sinh m7r(1 - Z)/S'f ' dUI . m7rA } 
+ ." smh -- rill. sinh m7rI/S' 0 rill. S' 

where 8. is the turning angle of the cascade. This solution is valid for a plane 
cascade with symmetrical flow about mid span. It can be easily modified for other 
cases. 

In particular the passage-averaged cross-flow velocity 02 is given by 

1 f 8' 2 ",,,.' 
V2 = -; vdn = - L: s 0 7r _1.S.�... m 

and the cross-flow angle change (averaged across the pitch) is 

D2 V2 cos a2 �'h= -= - --
U2 UI cos al 

(22) 

(23) 

Smith (1955) has called this type of solution the channel theory of secondary 
flow, since it is based on the determination of the streamwise vorticity within the 
channel. If the channel walls end abruptly then there is an interaction between the 
streamwise vorticity within the channel and the vortex sheets leaving the walls (or 
blades) that bound the channel. We consider the velocities at the trailing edge, 
and the vortex sheets thus created, in the next section. 

Vortex Sheets Arising From Secondary Flow 

To discover what happens at the trailing edge of a cascade blade, we may trace 
the path of the vortex filaments carried through the cascade. This has been done 
by several authors (e.g. Hawthorne & Armstrong 1955 and Smith 1955). Perhaps 
the clearest way of doing this is to use the drift function (t) introduced by Lighthill 
as in an earlier review by Hawthorne & Novak (1969). 

The general drift function approach involves identifying the vortex filaments in 
the flow at some time far upstream before the flow is deflected. At time t later the 
vortex filaments are located again and lines of constant t may be drawn through
out the flow for the successive positions of the vortex filaments. The fluid particles 
are carried a distance ds in the direction of the velocity vector V in time dt. It fol
lows that (,) . Vt=O and V ·Vt=1. 
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SECONDARY FLOWS 255 

For an inviscid, incompressible fluid 

'VP 

and 

- X 'Vt = (V X (0)) X 'Vt = (0) = 'V X V 
p 

'VP 
V = 'VrP - t 

p 

(24) 

(25) 

which is a form of Qebsch's transformation, and rP is a potential function. Haw
thorne & Novak (1969) apply the drift function to a weak linear shear flow UI(Z) 
(with dUl/dz constant) past a long cascade, and use the secondary-flow approxi
mation with the vortex filaments convected by the uniform primary flow. It may 
be shown that the components of V are u=utiJ</J% s, I)=Ulo</JO/on, w=(</Jo-to) . (dut/dz), where to is the drift function of the plane primary flow, having poten
tial rPo. (Other additional velocities may be required to satisfy the Kutta condition 
precisely.) 

Using these expressions, Hawthorne determines the strength of the trailing 
vortex sheet on blade B (Figure 1 b) as 

dUI rtDI/ = WB+ - WB_ = dz (rPoB+ - rPOB_ - (to/<+ - tOBJ) 

dr dUfdS 
=--- -dz dz Vo 

(26) 

where r is the local circulation and the integral is taken around the airfoil surface 
in the direction of the circulation and is in general negative. Note that we take + 
as the suction surface, - as the pressure surface, of a compressor cascade (Figure 
Ib) and rtD is, in the same sense as�, positive in the flow direction. 

The first term is the shed circulation, the gradient of the bound circulation along 
each airfoil, and the second is called the trailing filament circulation, caused by the 
stretching of the entering vortex filaments as they move over the surfaces of the 
airfoil. 

Again, using the expression for w, Hawthorne shows that the total circulation 
enclosed within a section of unit height far downstream of the channel, where 
1)=0, is 

rtotal =- + S'- -- ---dr dUl (Sin a2 sin al) 
dz dz cos al cos a2 

The averaged secondary circulation within the passage is therefore 

dUt [ f ds (Sin a: sin al)] 
rtota1 - r", = �S' = .. Ut - + S' -- - --dz V cos at cos a2 

(27) 

(28) 
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256 HORLOCK A LAKSHMINARAYANA 

which is identical to a form given earlier by Hawthorne (1955). The channel 
secondary vorticity is 

_ dud dz [UI cos ay; ds sin 2a2 - sin 2al] 
t - - + ---,.----

cos al cos a2 S V 2 
(29) 

which is similar, but not identical, to the expression for secondary vorticity ob
tained by Loos, equation (11). 

An alternative approach to this problem was given by L. H. Smith (1955), who 
traced the vortex filaments through in similar fashion. However, Smith defines 
the secondary vorticity as the difference between the actual component of the 
vorticity within the channel and that which would exist if the channel were of 
infinitesimal width, i.e. if the blades were closely spaced as in an actuator disc. 
(Smith's primary flow is the actuator disc case, whereas Hawthorne's primary 
flow is a uniform flow convecting the vortex filaments. However, if the shear is 
small then the differences in primary flow do not matter.) 

Smith's analysis leads to an expression for his averaged secondary vorticity of 
the form 

(30) 

where fVA is the positive actual circulation (Smith's primary plus secondary circu
lation) around each vane or airfoil, ry is the (Smith) primary circulation, dZI and 
dz2 are the distances between the stream surfaces upstream and downstream, and 
u.. is the vector mean velocity through the cascade. 

We may compare these expressions of Hawthorne [equation (28)] and Smith 
[equation (30)J for the secondary vorticity developed in a two-dimensional com
pressor cascade deflecting the flow from a flow angle al to a flow angle a2, in 
which the shear is weak, 1/1=dul/dz, and dZI =dz2• The terms :fds/Vand -rYA/ 
u..2 are clearly identical (both negative). Smith's term dfv/dz may be written 

dry d 
-- = S- (UI sin al - U2 sin (2) 

dz dz ( dUI dUI) 
= S sin al- - sin a2-

dz dz 

since al and a2 do not vary with Z in the primary flow. 
It is at this stage that the assumption about Smith's primary flow becomes 

critical. In that flow Plc::::t.P2, and with static pressures Pl and P2 constant, it follows 
that 

duz cos a! dUl 
- � ---

dz cos al dz 
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SECONDARY FLOWS 257 

l:lence Smith's expression (30) for the secondary circulation becomes 

dUj ds dUl (Sin a2 cos a2 

) �S' = Ul - - +S- - sin al 
dz V dz cos al 

(31) 

and there is no inconsistency between L. H. Smith (31) and Hawthorne (28) for 
this simple case in which the primary flows of Smith and Hawthorne both have 
the vorticity normal to the streamline leaving the cascade. (Note that Smith's 
secondary vorticity as defined is not always along the streamline, whereas Ha w
thome's is.) 

If there is streamwise vorticity at entry to the cascade then the equivalence of 
the two approaches is not so immediately evident. Consi�er for example a "Bel
trami" flow (one of uniform stagnation pressure but with streamwise vorticity, 
which makes the flow angle nonuniform) moving through a cascade of twisted 
fiat plates that receive the skewed flow at zero incidence but do not deflect it at all. 
The general equation (4) shows that b=�l where �l is the entry streamwise vor
ticity-the only component of vorticity. Thus, in Hawthorne's definition, the 
streamwise vorticity at exit is equal to that at entry. However, from Smith's equa
tion (30), since rYA =ry=o, the secondary vorticity is zero (using Smith's defini
tion). However, primary (Smith) vorticity at exit is equal to that at entry, so that 
there is vorticity along the streamline at exit. Smith would call this streamwise 
vorticity primary vorticity, whereas Hawthorne would call it secondary vorticity. 

For rotating coordinates L. H. Smith's statement is the same as that for sta
tionary coordinates: ( rYA dry) dZl - (�lV - �lVPr) = Wl1'/lVl W .. 2 + a;- dz: (32) 

Where 71lVl is again the absolute vorticity resolved normal to the relative stream
lines at entry and (�Wpr) is the absolute vorticity along the relative streamline in 
the primary flow. Smith still defines his secondary vorticity as the difference 
between the actual absolute vorticity and the absolute vorticity of the primary 
flow, employing the Helmholtz laws to see how the absolute vorticity changes 
through a blade row, which may be rotating or stationary. A difficult point that 
arises is the question of what vorticity should be used to calculate the secondary 
velocities in the rotating channels. L. H. Smith again argues that the vorticity 
that should be used is the difference �-Ewpr. His argument may be illustrated as 
follows: 

If the (Smith) primary absolute flow velocity is Vpr and it is disturbed to pro
duce a velocity v (absolute), then we may state the relative primary and total dis
turbed relative flows as 

(33) 
and 

W = Vpr + V - C/o X r 
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258 HORLOCK &: LAKSHMINARAYANA 

respectively. The disturbance flow in relative coordinates is therefore W -Wpr 
=v, and its curl is (,), the vorticity of the absolute disturbance. To calculate the 
disturbance velocities at the trailing-edge plane of the rotor row, we must there
fore resolve the absolute vorticity in the direction of the relative flow to obtain 
(tw-tw",). 

We may again discuss the consequences of using the A. G. Smith type of equa
tion (16), which gives the total vorticity generated along the relative streamline, 
and the L. H. Smith equation (32), which gives the secondary vorticity as an ex
cess over primary vorticity, by reference to two simple examples. First, consider a 
uniform flow entering a rotating row of blades. Since Vl/p=O at entry, it is clear 
from A. G. Smith's equation (16) that no absolute vorticity w can be developed 
even if the flow is deflected. For a (relative) deflection of this flow, L. H. Smith's 
equation (32) would give-[tw-Wp,]=dI'v/dz, since 7)Wl=O. But dI'v/dz 
=twpr in the primary flow so that W would be zero, as predicted by A. G. Smith. 
However, L. H. Smith would argue that in his own definition secondary vorticity 
does exist. 

As a second example, consider a forced vortex flow entering a rotor, with 
tangential velocity everywhere equal to the blade speed so that the relative veloc
ity is axial. The entry vorticity is now 20b in the axial direction, and 'i1l/p 
= WX20b=O at entry. Suppose this flow moves through a set of rotating fiat 
plates without causing relative deflection. Then 7)W1 need not be zero, but since 
there is no deflection the A. G. Smith equation (16) gives the absolute secondary 
vorticity tw as unchanged: w=20b• L. H. Smith's equations give (tw-wpr)=O, 
since rVA and rv are both zero. However, this is not inconsistent with A. G. 
Smith's result that w=U4 since L. H. Smith's primary vorticity is nonzero: 
tWpr=2Q",and therefore tw=twpr=2Q".1t appears therefore that the A. G. Smith 
and L. H. Smith equations are consistent, but that to determine the secondary 
flow in rotating channels the (L. H. Smith) primary streamwise vorticity must 
first be subtracted from the total secondary vorticity before the secondary veloci
ties are calculated as a disturbance of the (L. H. Smith) primary flow. 

Secondary Flow in Passages with Twisted Blades 

In most turbomachinery the blades are twisted, giving rise to spanwise variations 
of the blade geometry, which are not allowed for in the cascade theories presented 
in the earlier sections. Ehrich (1955) developed a theory for predicting the 
secondary flow in a cascade of twisted blades. A more general approach, based 
partly on Hawthorne & Novak's (1969) analysis but written in s, n, z coordinates, 
is given here. 

If the flow is collateral at entry, but the blade twist is represented by 8,-0. 
where 8, is the local turning angle, and 8e is the (spanwise) mean turning angle for 
the cascade, then the equation for the secondary stream function in the s, n plane 
perpendicular to the mean flow at exit is given by equation (20), but the boundary 
conditions are modified to: (i) Yt(n, O)=1/I(n, 21)=0 and (ii) 0l/I/iJz(±S'/2, z) 
.; -ul(8,-0,) since excess deflection (8,-0,) causes a cross flow against the n 
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direction. By writing 1jI =1jI*(n, z)+1jI'(z) where d,///dz= -ul(8.-8.) we can recast 
equation (20) into 

(34) 

If Squire and Winter's expression for � [equation (9)] is used, equation (34) 
reduces to 

(35) 

This indicates that for small shear and small twist, if 8.Ul'=constant the secon
dary flow would be eliminated completely. Thus, if it is desired to reduce secon
dary flow, 8. should be increased when Ul is decreased. A physical interpretation 
of this conclusion is that both the secondary flow and the nonuniform inlet 
velocity redu�e the circulation in the low-velocity region and this can be com
pensated for by increasing the local turning. The effect is to make the circulation 
more uniform along the span, eliminating the trailing vorticity and the secondary 
vorticity. 

Ehrich tested this hypothesis by conducting three sets of experiments in a 
cascade of space/chord ratio = 1.04 and aspect ratio =2.08: (i) with no twist, but 
nonuniform inlet flow; (ii) with twist, but with uniform inlet flow; (iii) with both 
twist and nonuniformity such that 8.u12=constant. His experimental results re
produced in Figure 2 clearly reveal a reduction in secondary flow by this twisting 
of the blades. The experimental distributions of stream functions (Figure 2) agree 
closely with those predicted from the solution of equation (35) [assuming that 
8.�. so that the first term on the right-hand side is -28.(dul/dz)]. 

Ehrich used a moderate shear across the blade span, avoiding the danger of 
flow separation that usually exists near the end walls. Attempts to achieve this 
objective near the end wall increase the risk of flow separation and the conse
quent losses. It should be noted that Martin (1959) achieved an unseparated flow 
of almost uniform exit angle by reducing the blade outlet angle near the wall and 
letting the secondary flow produce the deflection there. 

Hawthorne & Novak (1969) have carried out an analysis of the flow in an 
annular cascade with axial inflow (Ul), but with variation in outlet flow angle aJ 
along the span, now taken as r. They resolve the secondary vorticity �2 into tan
gential and axial components, the former (;2 sin at) causing a radial gradient of 
axial velocity and the latter leading to an equation for a (Stokes) stream function 
describing the radial and tangential velocities in the trailing edge (r, 8) plane of the 
form 

(36) 
where 
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Figure 2 Measured secondary flow pattern with (a) nonuniform inlet flow, but no blade 
twist, (b) uniform inlet flow with blade twist, and (c) nonuniform inlet flow and blade 
twist. The numbers on the contour denote the values of if;12!..u,)R{6.)al and subscript R 
denotes the reference value at inlet (Ehrich 1955). 

Applying the Kutta-loukowski condition, Hawthorne & Novak determine the 
tangential velocity required at each trailing edge from the axial velocity distribu
tion. They subtract this tangential velocity, defining a new stream function giving 
zero tangential velocity at the boundaries of each blade channel. The equation 
for this modified stream function is 

U2 cos a2 d 
V�* = - (r tan (2) - �2 sec az = F(r) (37) 

r dr 

Later, Hawthorne (see Dixon 1972) reduced the above equation into Cartesian 
coordinates by writing 
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= exp -- , 

Thub N 
211"Y' 

8= -
N 

where N is the number of blades. The solution is then given by 

where 

and 

.. 

!/I. = L !/1m· sin (m1l"Y') 
_1.1.5··· 

- .
4 {Sinh m1l"z' f I G(t) sinh mr(l - t)dt 

m2'lr2 smh m'lrl " 

+ sinh m1l"(1 - z') �" GO) sinh m'lrtdt} 
(2'lrT)2 

G(z') = F(r) N 

(38) 

(39) 

This solution is similar to the earlier solution for a rectilinear cascade [equation 
(21)], but G(z') now includes the effect of twist as well as secondary flow. These 
equations can be modified to include streamwise vorticity at inlet. 

Limitations and Developments of the Secondary-Flow Approximation 

For a large turning cascade accepting a steep inlet velocity profile, the secondary
flow approximation loses validity. Distortion of the Bernoulli surfaces, spanwise 
flows, and effects of viscosity should be taken into account. Furthermore, the 
low momentum fluid is continuously transported towards the corner formed by 
the wall and suction surface, thus initiating wall stall in this region. We consider 
here modifications to the secondary-flow approximation in attempts to allow for 
these effects. 

BERNOULLI-SURFACE RGrATION, DISPLACEMENI", AND VISCOUS i:.l"I'I!CfS If {3 is the 
angle between the direction of the principal normal and the normal to the Ber
noulli surface, equation (5) becomes, for inviscid flow, 

!.. (i) 
= 

_ 2711 sin {3 
AS V VR (41) 

When the Bernoulli surfaces are not distorted as in the small-shear large-deflec
tion case, {3 remains at its initial value of 11"/2. In practice, distortion does take 
place, and we may allow for it approximately in the secondary-vorticity equation 
although strictly the "secondary-flow approximation" does not permit us to do 
so. 
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Dean (1954) and Lakshminarayana & Horlock (1967a) have shown that, tor 
moderate turning in which '11 is unchanged through the cascade. this distortion is 
given approximately by 

(42) 

where O=local turning. O. = total turning. and c=chord length. Substitution of 
this into expression (41) yields 

(43) 

If u (0. z) is known, viscous as well as Bernoulli surface rotation effects can be 
allowed for in calculating the strength of the streamwise vorticity at exit. 
Lakshminarayana & Horlock (1967a) have integrated the expression in equation 
(43). The effect of Bernoulli-surface rotation is to reduce the strength of the 
secondary vorticity, its effect becoming appreciable for large values of (melul) 
andO •. 

At small outlet angles the secondary flow in the blade passage largely deter
mines the variation in outlet angle downstream. At large outlet angles. the 
secondary flow effects are masked by large spanwise flows associated with 
changes in axial velocity profile referred to as displacement effects. Along a 
streamline outside the blades, the flow angle changes with the axial velocity, the 
tangential velocity being conserved. Hawthorne & Armstrong (1956) developed 
an analysis for predicting these effects using actuator-disc theory. Their expres
sion for the effects of secondary flow (without Bernoulli-surface rotation) and 
spanwise displacement is given by 

_ 2(m + 1) cos az .. !/1m' 
.!laz = L: 

1rUl cos al _1.a... m 

sin 2az (COSz az ) ( ( U 1 )P+l) 
- -- -- -1 1--

4 cost al Ul 

where p= tanZ a2/(2+tant £rz) and U1, at are the entry velocity and exit angle out
side the shear region. Here !/1m' is the derivative of a secondary stream function 
given by equation (21). 

The authors (1967a) attempted to incorporate all these effects in the prediction 
of outlet angles and velocities in a cascade with an artificially generated wake up
stream (Lakshminarayana & Horlock 1967b). The viscous effects were accounted 
for in an approximate way by taking into account the diffusion of the wake up to 
the actuator disc. The difference between this approach and that of Louis (1956) 
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(ACX2,S+ (AQ2'D 
LOUIS (1956) 
[(Aa2'S] BV+ (A<I2'D 

\ TWO DIMENSIONAL 0-

� 
�r� o 

THEORY 

EXP'T. . .  J J 
0·07 

I 
0·21 

ZIl 

I 
0'35 

SPAN WISE DISTANCE FROM 
WAKE CENTRELINE 

Figllre 3 Comparison between experimental and predicted changes in average outlet in 
a cascade (Lakshminarayana & Horlock 1967a). 

is that the latter allowed for continuous change in shear and calculated the 
streamwise vorticity at several chordwise stations. The authors' approach was 
first to calculate the velocity profile at the actuator plane, and then to estimate the 
secondary vorticity from equation (43) using the value of 111 derived from this 
profile. 

The authors' (1967a) results are shown plotted in Figure 3. The contribution 
due to (i) secondary flow with no rotation of Bernoulli surfaces, (.6.a2)s, (ii) 
secondary flow and displacement effect, (.6.a2)s+(.6.a2)D, (iii) secondary flow (with 
Bernoulli-surface rotation and viscous effects) and displacement effects, (.6.a2)BV 
+(.6.a2)o, are shown separately. A calculation using Louis' equation (10) is also 
shown. It is clear that these effects substantially reduce the overturning. The final 
calculations show good agreement with experimental results, but the interaction 
between these various effects is such that their linear superposition may not be 
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264 HORLOCK &; LAKSHMINARAYANA 

justified. In particular, the large displacement effect may not be representative of 
boundary-layer flows. 

SECONDARY FLOW AND THREE-DIMENSIONAL BOUNDARY-LAYER THEORY The 
secondary-flow analysis given so far is for inviscid flow, except for the effect of 
viscosity allowed for by Marris in equations (4) and the modifications suggested 
in the previous sections. The theory of three-dimensional boundary layers has 
been reviewed elsewhere, notably by Joubert (1967) in the book edited by Sovran. 
We may also note Emmons' comment on that paper and the parallel paper by 
Hawthorne (1967) on secondary-flow analysis: "I somehow have the feeling they 
were both talking about the same thing, at least in some regions, although it is 
quite obscure at the moment." 

Regions of low viscosity One of the striking results of work on three-dimensional 
boundary layers is the so-called triangular polar plot of Johnston (1960). He 
found experimentally that in the outer part of the boundary layer the cross flow is 
given by 

(45) 

and he explained this analytically by what was essentially inviscid secondary-flow 
analysis, showing that A= 28. Johnston's result follows quickly from the Squire 
and Winter result for secondary vorticity r;fl �. 

du aw ao 
� = - 28-=---

dz iJn iJz 
(46) 

In an unbounded three-dimensional boundary layer (or one where the walls 
are far apart), iJv/iJz»iJw/iJn and 28du/dz= dv/dz. Integration of this equation 
with the boundary condition that 0= 0 where U= U yields 0= -28(U-u), which 
is Johnston's result. 

This similarity between the results of inviscid secondary-flow analysis and the 
cross flow in the outer part of a boundary layer has been extended by Horlock 
(1971); he has solved approximately the secondary-flow equation (20), taking 
�= -28du/dz and assuming the simple fonn for the secondary velocities v and w 
given by Mellor & Wood (1971), w varying linearly across the pitch and v para
bolically. He takes the average of equation (20) across the pitch to obtain 

Ii = - 28(U - u) + ka* exp (-kz) (47) 

where k=v'12/S' and a* is the streamwise displacement thickness of the boun
dary layer. 

This expression shows that as the distance between the walls S'-+«J, Johnston's 
result is obtained. The mean angle variation across the pitch given by this ap-
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Figure 4 Comparison between Hawthorne's channel theory and Horlock's approximate 
solution. 

proximate analysis is shown in comparison with Hawthorne's exact solution in 
Figure 4 for a cascade of large span. The advantage of Horlock's result lies in 
the relatively simple fonn of equation (47) and this is being used in three-di
mensional integral boundary-layer calculations. 

Boundary layer transport Perhaps the most important viscous effect on cascade 
flows is the sweeping of the wall boundary layers toward the suction surface of 
the blade. This results in concentration of low-momentum fluid in the corner 
between that surface and the wall, often leading to local separation or wall stall. 
Ehrich & Detra (1954) first made an estimate of this effect, calculating the local 
movement of fluid particles from inviscid secondary-flow analysis (the secondary
flow approximation). Horlock et al (1966), Dean (1954), and Lakshminara yana & 
Horlock (1967a) have estimated simply the rotation of the Bernoulli surfaces, but 
their analysis is not sufficient to deal with this problem. Horlock et al (1966) 
estimated the secondary rotation in the trailing-edge plane with the corner arbi
trarily blocked off in a wall-stall region; Dring (1971) has recently calculated the 
boundary-layer development in the channel and the amount of fluid swept into 
the corner. 
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None of these approaches can satisfactorily explain the onset of wall stall. 
However, it may well be that this phenomenon is seen more often in cascades 
than in compressors, where streamwise vorticity at entry may oppose the genera
tion of secondary vorticity and reduce the rotation of the Bernoulli surfaces and 
the sweeping of the boundary layer into the comer. 

THE AIRFOIL TYPE OF ANALYSIS (LARGE SHEAR, 
SMALL DISTURBANCE) 

As explained in the introduction, the airfoil type of analysis is based on the con
cept of a primary flow ub) (which is the unperturbed velocity in the absence of 
blades) that passes over a series of lifting lines or surfaces. This theory falls into 
the category of "large shear-small disturbance" approximations described by 
Hawthorne (1967) and is essentially based on linearization of the equations of mo
tion. If the disturbance velocities are small, conventional thin-airfoil theory ap
proximations are made in addition to the assumption that the flow is inviscid and 
isentropic. The analyses for a cascade (Honda 1961, Namba 1969) are similar to 
that proposed by von Kannan & Tsien (1945) for a single airfoil (lifting line) in a 
shear flow, but the cascade case is mathematically very complex. 

The lifting-line approach is based on the use of a pressure dipole with its axis 
normal to the undisturbed stream, whereas in the lifting-surface theory a sheet of 
pressure dipoles is used to replace the cascade of blades (Figure 5). The basic 
equations of Namba (1969) will be given, and except for some minor changes his 
notation will be used throughout. While Namba (1969) distributes singularities 
along the direction of the upstream velocity as shown in Figure 5, Honda (1961) 
distributes them along the direction of the vector mean velocity (the vector mean 
of inlet and outlet velocity). The differences in the expressions of Honda and 
Namba are mainly due to this effect. In any case, the difference in the two ap
proaches is a second-order effect, since the small-perturbation assumption means 
very low turning. The chord is taken as unity, so that the space-chord ratio is S 
and the aspect ratio is U, i being the angle of incidence. 

If u, 0, ware now the perturbation velocities [from the inlet value Ul(Z)] and p 
the perturbation in static pressure Over the mean of inlet and exit pressure, 
linearization of the equations of motion and energy leads to the following 
equation: 

i}Zp i}zp azp 2 dMo(z) i}P 
[1 - {MoCz)}2] - +- +- - -- -- - = 0 (48) iJx2 oy2 (JZ2 Mo(Z) dz dz 

where Mcl..z) is the value of the (unperturbed) Mach number far upstream. The 
boundary conditions to be satisfied are 

ap 
(i) - = 0 

QZ 
atz = 0, 21 
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Y,V 

<; .. , 
M olz):.---_____ ..... S 

�. ,,;-1 
if _ _ _ 'f _ X,u -�2� -

, SINGULARITIES 

( .. ) _ t:..p 11 P = + 
2 

Figure 5 Notation for airfoil theory. 

as x --+ += co 

where t:..p is the pressure rise across the cascade 
(iii) the kinematic condition on the blade surface (camber), 

(�) = f(x - mS sin 'Y) 
Ul v-mS COl ., (49) 

for 1 x - mS sin 'Y 1 < t and m = 0, ± 1, ± 2 . . .  
where'Y is the stagger angle of the cascade (Figure 5) and I(x) is the slope of 
the mean camber surface. 

Using the method of separation of variables, we can express the solution of 
equation (49) in the following integral form: ...-+00 f+l/2 

p(x) = - L sgn (y - mS cos 'Y) di 
m-oo -1/2 � 00 [cos {k(x - x - mS sin 'Y) } 00 

L exp (-A..(k) 1 y - mS cos 'Y I) F .. (x, k) Y .. (z, k)]dk 
.. _0 

(50) 
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268 HORLOCK '" LAKSHMlNARAYANA 

where Yn{z, k) and An(k) are eigenfunctions and eigenvalues respectively of the 
following boundary-value problem : 

with 

and 

d Y  
- = 0 at z = 0, 21 
dz 

1 f 2l Y .. (z, k) 
Fn(x, k) = - t.p,(x, z)dz 

21 0 M02 

(51) 

where t.p. is the pressure jump across the lifting surface, p(x) is the pressure per
turbation at any point x, and x is the location of the pressure dipole. 

In equation (50), m = O  corresponds to the contribution of the zeroth blade, 
and the remaining terms are due to interference effects of the adjoining blades. 
Methods of finding the coefficients Fn by using a Glauert type of trigonometric 
series are given by Namba (1969). Expressions for the local lift and lift coefficient 
are given by 

where 

co 
L(z) = 2'11" L: Fn(O) Yn(z, 0) 

n_O 

f+1/2 
'Fn(O) = F,,(x, O)dx 

-1/2 

(52) 

(53) 

INCOMPRESSIBLE LIFTING-SURFACE SOLUTION The solution for the incompressible 
flow through a lifting surface can be obtained from this analysis simply by replac
ing Mo2 with (u12ja2) and taking the limit as a�oo ,  with Ul(Z) fixed. The equa
tions of Namba (1969) then reduce to those of Honda (1961), whose analysis is 
for incompressible flow. (See Namba 1969 and Nally & Hawthorne 1969.) 

LIFIlNG-LlNE SOLUTION In lifting-line theory only one pressure dipole is used at 
x = O. The governing equation and the boundary conditions are the same, except 
that the kinematic condition [equation (49)] is now replaced by 

lim { [P]II-mS co. '1-' - [p]I/-"'S co. H'} = o(x - mS sin 'Y)L(z) (54) ....0 
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where 0 is the Dirac delta function. The solution of this problem [similar to equa
tion (50), without the integration over i and the dependency of F,. on x] is given 
by Namba & Asanuma (1967). 

Nwnerical Results from Airfoil Theory 

Namba (1969) has investigated theoretically the effect of shear on a cascade with 
S/c=1.0, y=60°, and aspect ratio =2.5 at various inlet Mach numbers for the 
incident Mach number profile Mo(z)=(Mo)_o exp (z/2I). His calculations are 
reproduced in Figure 6 and compared with the results of lifting-line theory 
(Namba & Asanuma 1967). In these figures the lift coefficient is normalized with 
respect to the corresponding value in two-dimensional incompressible flow, CL2D' 
The agreement between the lifting-surface and lifting-line theory is good at very 
low Mach numbers but it becomes progressively worse as the sonic point is 
reached (z = 21 in Figure 6). 

Some of the other conclusions derived by Honda (1961), Namba & Asanuma 
(1967), and Nally & Hawthorne (1969) on the basis of airfoil theory are : 

JoO 

0'5 
o 

_ 1 
0'5 

Z/2L 

-
J ·O 

Figure 6 Spanwise distribution of the local lift coefficient in shear flows : lifting
surface theory; - - - - lifting-line theory. A cascade of flat plates of S = 1.0, "Y = 60°, and 
2J� 2.5 (Namba 1969). 
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(1) For the same shear (velocity gradient dut/dz) and 8 (boundary-layer thickness 
or extent of shear in the spanwise direction), unifonnity in the distribution of 
local lift coefficient CL is maintained as the spacing is decreased for constant 
chord. (However, note that a/s is changed in such a calculation and this is prob
ably the dominant parameter rather than space-chord ratio.) 

(2) The kinetic energy in secondary flow decreases almost linearly with decrease 
in blade spacing, all other parameters being held constant. 

(3) Increase in cascade blade stagger increases not only the spanwise nonuni
fonnity in the CL distribution but also the kinetic energy in the secondary flow. 

(4) For the same Sic, entry shear, and 8, the effect of increasing the aspect ratio 
(by decreasing the chord length, keeping the blade length the same) is to weaken 
the secondary flow, thus bringing about a more unifonn distribution of the span
wise lift coefficient and deflection angles. 

(5) The sharp increase in lift coefficient near the low-velocity region (Figure 6) 
cannot be reduced by reducing the angle of attack to zero in that region. A con
siderable amount of twist, so as to reverse the sign of the angle of attack in this 
region, is required to overcome the large local increase in CL. 
(6) The spanwise distribution of the lift coefficient is weakly dependent on Mach 
number but shows a strong dependence on upstream velocity and entropy gradients. 

Comparison with the Secondary-Flow Approximation 

Namba (1967 and private communication) has shown that the circulation (rID I) 
in the wake downstream derived from lifting-line theory and the circulation (rID,) 

derived from the secondary-flow approximation are related by 

According to the assumptions made in airfoil theory O(fP) is small, and the 
secondary-flow approximation is based on small shear gradients, so that 
o [(dul dZ)2] is s.mall. Thus, within the limitations of the theories, both approaches 
lead to the same circulation in the wake far downstream. 

EXPERIMENTAL RESULTS 

There exists a large amount of experimental data relating to secondary flow. 
Some experiments were specifically aimed at checking the theory ; several other 
results reveal the physical phenomena and the effect of cascade and flow parame
ters on flow losses. 

Comparison with Theory: Cascades 

Several investigators have carried out carefully designed experiments with inlet 
shear flows not only to check the theory but also to understand the basic phe-

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

97
3.

5:
24

7-
28

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

In
di

an
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
- 

M
um

ba
i/ 

B
om

ba
y 

on
 0

8/
18

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



S£CONDARY FLOWS 271 

Domena. The inlet shear, generated by artificial means, was carefully selected to 
avoid flow separation, which is beyond the scope of present theories. 

Hawthorne & Armstrong (1955) carried out their experiments in a cascade 
of turbine impulse blades of space-chord ratio unity, aspect ratio 21/c== 3, 
£1. = 35°, and £12 = _37°. The ratio of lift coefficients CdCLoD (where CL is the 
local lift coefficient and CLzD is the corresponding two-dimensional value, both 
normalized with respect to local inlet dynamic head) is plotted in Figure 7 and 
compared with the predictions of Honda's (196 1) lifting-surface theory and Haw
thorne's small-shear, large-deflection analysis_ The latter agrees better with the 
experiment, the agreement with airfoil theory being only qualitative. This is not 
surprising, since the airfoil theory is limited to very low turning. These results 
clearly reveal the limitations of the airfoil theory in practical configurations. 

Lakshminarayana & Horlock (l967b) carried out their experiments in a cas
cade with space-chord ratio unity, 2l/c =4.83, £II == 52", and a2=31Q• The shear at 

'-75 

,-so 
CL 

CL.2D 

'-25 

075 I 
0-2 

HONDA 

HAWTHORNE 
• EXPERIMENT 

I 
0-6 

• • 

. I 
o-a 

I 
1-0 

Figure 7 Comparison between theory (Honda and Hawthorne) and experiment (Haw
thome and Armstrong). 
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the inlet was obtained by placing a perforated metal plate upstream of the cascade. 
In Figure 3 the authors' measurement of the change in outlet angle (das) is 
compared with (i) Louis' (1956) theory and (ii) the authors' (l967a) calculation 
(which includes the effect of Bernoulli-surface rotation as well as an approximate 
estimate of viscous effects). The agreement with the authors' prediction is quite 
good. The difference between Louis' prediction and experiment is due to the 
neglect of Bernoulli-surface rotation and the displacement effect, neither of which 
is allowed for in his theory. 

Namba & Asanuma (1967) carried out experiments in a cascade with high 
subsonic inlet Mach numbers to check their lifting-line analysis. The cascade 
parameters were space-chord ratio unity, 21/c=1 .25, incidence i= _4°, stagger 
angle -y=40°, and blade camber = 16°. Blade pressure distributions were mea
sured for three inlet Mach number profiles Mo = a exp (l .45z/2l), with a = 0.075, 
0.15, and 0.23. The agreement between measured and predicted lift coefficient 
(Figure 8) is good at low subsonic Mach numbers, but the differences are appre-

2'0 • 

1 '0 

o 
I 

0 '5 

EXPT THEORY a 
o 
ct 

I 
1 '0 

0'075 
0' 1 5  
0'23 

Figure 8 Spanwise distribution of local lift coefficient for a cascade ('Y =40°, S/c= 1 .4, 
21 = 1 .25, i= -4°) (Namba & Asanuma 1967). 
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ciable at high subsonic Mach numbers. The discrepancy between theory and 
experiment near the wall Oow values of z/2l) may be due to wall stall. Since the 
secondary flow is from pressure to suction surface in this region, low-energy fluid 
tends to accumulate and initiate the wall stall. In general, the agreement between 
theory and experiment is good, wbjch establishes the validity of the analysis 
for low-turning cascades. 

Comparison with Theory: Guide Vanes, Rotor and Stator 

A number of experiments have been carried out to measure the extent of the 
secondary flow caused by the annulus wall boundary layer in one, two, or three 
blade rows of a turbomachine. Some comparisons have been made between these 
measurements and analytical predictions of the flow. 

In an early experiment, Horlock (1963) tested a stationary row of twisted guide 
vanes with axial flow at entry, measuring the radial distribution of the mean 
outlet angle ch He made a two-dimensional secondary-flow calculation based on 
the tip-section blade geometry and the measured entry velocity, correcting the 
(three-dimensional) design flow angles by these calculations and obtaining fair 
agreement, as there was no wall separation in the row. The calculation would 
now best be done by the Hawthorne & Novak (1969) method for twisted rows, 
using the transformation solution given by equation (38). (See Dixon 1 972 and 
Gregory-Smith 1970.) 

For an isolated rotating row, Gregory-Smith (1970) has similarly measured the 
inlet and outlet boundary layers and the outlet angle distribution. He used (i) 
the (measured) outlet vorticity, '7W2, (ii) a secondary vorticity, based on '7wt and 
equation (16) for calculating �W2' and (iii) the approach suggested by Hawthorne 
& Novak (1969) for twisted blades, but using a finite-diff'erence method to solve 
for the secondary velocities in the r, 8 plane of the trailing edges. Gregory-Smith 
thus obtained the apparently perfect prediction of outlet angle distribution shown 
in Figure 9 in comparison with his experimental results. However, the use of 
'7w: is questionable, as is the neglect of tip-clearance effects and Bernoulli-surface 
rotation. Lakshminarayana (1970) allowed for tip-clearance effects as well as for 
secondary flow in predicting the outlet angle measured at the exit of a General 
Electric rotor, and obtained qualitative agreement. He used the mean of the 
measured inlet and outlet velocity profiles in deriving the values of �WI' 

The importance of combining a secondary-flow analysis with a boundary
layer approach to give '7W, is emphasized here ; a designer would not be able to 
measure '7W2 but would have to calculate it, if he were to take full account of the 
influence of secondary flow in his design. An attempt to calculate the boundary
layer development through this rotor (see Horlock & Hoadley 1970) is illustrated 
in the same figure. The cross flow was assumed to be of the Prandtl-Mager type, 
and although the boundary-layer thickness is closely estimated, the cross flow 
(or the outlet angle) is not so well predicted by this boundary-layer analysis as by 
the secondary-flow approach of Gregory-Smith, with an assumed velocity gradi
ent 1]W2 =du2/dr. What is next required is the introduction of the angle variation 
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30 � 

ti IfJ 25 
o I). • EXPT. 

g LU  - GREGORY-SMITH 
0 $  --- HORLOCK & HOADLEY 
LU �  I- &L 20 
3 -J  O <.!>  II) Z  � 
10 < < � 15 
!: g  � ,  � �  

10 I I 20 
27 28 29 

RADIUS INCHES 

Figure 9 Axial velocity and outlet angles near the annulus wall for an isolated rotor 
(flow coefficient 0.7). 

given by secondary-flow analysis into a boundary-layer prediction method, and 
this is being attempted. 

Finally, if detailed secondary-flow calculations are to be successful in multi
stage compressors, account must be taken of the secondary vorticity produced by 
one row at entry to the next. An early attempt was made to do this by Horlock 
(1963), who again based his calculations on a two-dimensional solution for the 
secondary-stream function using the geometry of the tip sections of the three
stage compressor in which the flow was measured. The streamwise and normal 
vorticity components at the exit from the guide vane row were resolved into the 
relative flow direction to obtain �Wl' before a simplified form of A. G. Smith's 
equation [in the form of equation (16)] was applied to the rotor row to obtain 
€W2' Figure 10 shows the angle variation calculated at rotor exit in this way in 
comparison with experimental measurements. The important thing to note here 
is that the large streamwise (relative) secondary vorticity at rotor entry leads to 
underturning at the tip of the rotor. The generation of vorticity within the row fails 
to reverse the direction of the entering streamwise vorticity, which comes from 
the preceding row. 

L. H. Smith's equation (30) may be used in a similar fashion to trace the de
velopment of secondary vorticity (presumably the flow would be averaged down
stream of one row to obtain axially symmetric velocities and Smith's primary 
vorticity at entry to the next). Smith (see Horlock 1963) has emphasized the 
limitations of Horlock's approach-that of assuming that the entry vorticity to 
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EXPERI M ENT 
THEORY 
DESIGN 

I 
1 '2 

DISTANCE FROM WALL - I N  

Figure 10 Measured and predicted outlet angles (relative) at the exit of a rotor (with 
guide vanes) (Horlock 1963). 

the next row is simply the resolved part of the channel vorticity from the pre
vious row. 

Effect of Flow and Blade Geometry on Secondary Flow and Losses 
Laksluninarayana & Horlock (1963), Horlock (1966), Balje (1968), and Dunham 
(1970) made attempts to examine the large amount of experimental data avail
able from both compressor and turbine cascade tests, with a view to offering 
physical understanding of the phenomena and to producing a loss correlation. 
Dunham (1970) has made a comprehensive attempt to clear up some of the chaos 
that exists on the effect of blade and flow parameters on losses in cascades. No 
attempt will be made here to review the entire spectrum of data ; we highlight 
some of the earlier conclusions and offer, whenever possible, some new inter
pretations of the earlier as well as the new data. 

Secondary flow and losses may be expected to be functions of Uh a1, H1, c, I, 
S, Ph p., a1, �It and flow geometry. These independent parameters can be grouped 
into nondimensional fOnDS such as (PlUlclp., Udal, adS, Hit Ilc, Sic, tladUl, 
flow geometry), where the first two groups are Reynolds number (R,y) and Mach 
number (M) respectively, and Hl is the entry shape factor which indirectly takes 
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into account dutldz. Note that S'lc = (S cos cr(2)/e has not been included as an 
independent variable but is absorbed within the parameters Sic and "flow 
geometry." The local secondary outlet-angle change L\cr.2 and loss coefficient r. 
passage averaged at a distance z from the wall, can therefore be written as 

(55) 

Here the lift coefficient (or other blade-loading parameter) represents the most 
important effect of flow geometry. We would expect such a local loss coefficient 
to be almost independent of lie unless oil is large, when the secondary flow on 
one end wall influences the flow near the other end wall. The averaged loss coeffi
cient may be obtained as an area average tav = (cll)!olrd(zlc) (or as a mass
averaged loss as Dunham 1970 prefers). We would expect tal' to vary inversely 
as (llc) for large aspect ratio. 

Let us consider the effect of the independent variables on tav. 

(l) Hubert (1963) concluded from his experiments in a cascade, with RN varying 
from 105 to 106, that the effect of Reynolds number on secondary flow and losses 
is negligibly small. 

(2) Compressibility effects were studied experimentally by Hebbel (1965) and 
Namba & Asanuma (1967). Hebbel's experiments were carried out in a turbine 
cascade, whereas Namba's data were obtained from a transonic compressor cas
cade with artificially generated Mach-number profiles at inlet. The major conclu
sions of these two investigators are (i) that secondary-flow losses hardly change 
at moderate Mach numbers [it appears that if Mach-number effects are allowed 
for in calculating CL, Mach-number dependency can be removed from the func
tional relationship (equation [55J) at moderate Mach numbersJ , and (ii) that 
the strength and structure of the shock waves show fundamental changes from 
the tests with uniform inlet flow, beyond the critical Mach number. 

(3) Perhaps the most important flow parameters are some measure of the inlet 
velocity profile (HI or dUl/dz), the shear-layer or boundary-layer thickness OilS, 
and a measure of the skewing of the boundary layer such as �loIIUI' Wolf(1959) 
carried out experiments in a turbine cascade with different inlet boundary-layer 
thicknesses (with no skew) but approximately the same shape factor HI' The 
authors have noticed (by integrating Wolf's local loss coefficients) that there is a 
critical /hiS beyond which the losses decrease. This is similar to the trend pre
dicted by Hawthorne (1955), who found that the kinetic energy in secondary flow 
is strongly dependent on OIlS, with all other parameters held constant. However. 
viscous effects, especially the losses due to wall stall and direct frictional losses in 
the end-wall region, should be more dependent on 011 c, which from equation (42) 
appears to control the Bernoulli-surface rotation (-lr/2-{3�ecCI20, for a linear 
profile). Hence the choice of ads or {hie as a controlling parameter is still open to 
debate, although some investigators. notably Dunham (1970), have used the 
parameter ollc instead of aIlS. Very little information is available on the effect of 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

97
3.

5:
24

7-
28

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

In
di

an
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
- 

M
um

ba
i/ 

B
om

ba
y 

on
 0

8/
18

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



SECONDARY PLOWS 277 

HI on secondary losses or of the entry skew �l)IIUl although the latter must 
have a dominant effect. 

(4) There is still some controversy regarding the effect of aspect ratio (//c). 
Basing his opinion on much experimental data, Dunham (1970) concludes that 
the integrated losses are inversely proportional to aspect ratio. This is to some 
extent confirmed by Hawthorne's (1955) expression for the kinetic energy in 
secondary flow, 

e 
= 

8c2(S/e) 2 cosz az (!..) 
l/e f S' 

(56) 

which is valid for a linear inlet velocity profile. 

(5) It is now firmly established that the secondary-flow losses vary directly as CL' 
(Dunham 1970). 

Dunham has concluded from a survey of all known experiments that the loss 
can be tentatively represented by the correlation 

c cos aa CL2 COS2 a2 ( Val) 
ray = - -- -- -- 0.0055 + 0.078 -21 cos {31 (S/e)2 cos3 am C 

(57) 

where {31 is the blade inlet angle and am is the cascade mean angle. As discussed 
earlier, the use of otic alone (instead of OIlS' in addition) is open to debate. 

APPLICATION IN PREDICTING 
TURBOMACHlNERY PERFORMANCE 

How is the designer of an axial flow compressor or turbine to use the mass of 
analytical and experimental work that has been done on secondary flow? He can 
use the various correlations of secondary loss discussed by Dunham (1970) 
together with empirical corrections for angle changes (such as the "work done" 
correction factor of Howell 1942), as most designers do at present. However, 
these empirical rules take but little account of the major developments in the 
understanding of secondary flow. 

Achievements 

Before suggesting alternative approaches to turbomachinery design using secon
dary-flow theory it is perhaps as well to summarize what has been achieved, and 
where secondary-flow analysis is still in an unsatisfactory state. 

(1) The growth of secondary vorticity in channels can be calculated accurately 
for weak shear flows and in regions where viscous effects are small. 

(2) Induced secondary velocities may be calculated reasonably well, in both 
plane and twisted blade rows, if no separation (usually in the comer between 
annulus wall and suction surface) takes place. 

(3) The interaction of the secondary flow within the channel with the vortex 
sheets trailing from the channel walls (or blades) is well understood. These vortex 
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sheets contain both shed vorticity (arising from change in circulation along the 
blades) and trailing filament vorticity (arising from stretching of the entering 
vortex filaments). 

(4) The growth of the secondary vorticity in rotating channels can be assessed. 
It is the absolute vorticity resolved in the direction of the relative velocity that is 
required for the calculation of the secondary velocities. 

(5) In reading the literature, one should realize that secondary vorticity is defined 
differently by two of the most important contributors to this field. While the 
Hawthorne and A. G. Smith equations (5) and (16) give the total streamwise 
vorticity within a channel, the L. H. Smith equations (30) and (32) give the 
"excess" secondary vorticity-the vorticity over and above the primary vorticity 
that is calculated on the basis of closely spaced blading. 

(6) As an alternative to the small-shear, large-disturbance analysis, the lifting
surface theory due to Honda and Namba can be employed to predict the variation 
in lift coefficient and the induced drag due to secondary flow. It should be noted 
here that the analysis is limited to small turning. 

Limitations 

(1) For secondary flow associated with wall boundary layers, some form of 
boundary-layer calculation method must be used to give the normal vorticity 
(1/2) in order that the secondary vorticity may be calculated from the Hawthorne
A. G. Smith equations ; this calculation is also essential even for the Honda
Namba equations used in airfoil theory. 

(2) Presence of a comer stall effectively prevents the calculation of secondary 
velocities. 

(3) Secondary vorticity arising from one row has a major effect on the secondary 
velocities in the next row. Errors in predicting the secondary flow become cumula
tive as a result, in a multistage machine. However, it is this very effect that may 
reduce the skewing of wall boundary layers in multistage machines and the extent 
of the corner stall between suction surface and annulus wall. 

The Present Position 

With these achievements and limitations in mind, it should be possible for a 
designer to make a good estimate of the boundary-layer growth in the first two 
or three rows of a multistage machine and to estimate the growth of secondary 
vorticity and the corresponding secondary vorticities and changes in outlet flow 
angles (absolute for stationary rows, relative for rotatin.e; rows). The Hawthorne
A. G. Smith equations, or the L. H. Smith equations, can be used for calculating 
the secondary vorticity once the normal vorticity growth has been estimated from 
a boundary-layer analysis ; the secondary velocities are best calculated from the 
Hawthorne-Novak approach for twisted blades ; and care must be taken to allow 
for the transfer of streamwise vorticity at exit from one row to entry at the next. 
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Beyond the first two or three rows we cannot expect detailed secondary-flow 
analysis to be of much use, as the errors are cumulative, and we must expect 
empirical secondary-loss correlations to serve, if rather unsatisfactorily, for 
many years. 
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