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Propeller Theory and Design

Combined Momentum and Blade Element Theory
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Extensions of Blade Element and Momentum Theories

Extension of BET
The drag of a propeller core may be wrltten as:

Dl =15 le A1CD1
Where A, Is the frontal area of the propeller core.& C , Is the
drag of the core., C,;, =1 . This drag is often small compared
to the thrust produced and hence is neglected. In case of small
propellers or micro-propellers this term may be significant.
Thus the thrust coefficient becomes :

Cr=% mr[ [J2 + (2.7.r/d)? ] (Ccos ¢ -Cpsin ¢ ).c/d. d(r/d)
~ % J2.A,/d?
where, C ,;, =1 assumed.

It is seen that C + depends largelyon C | ---as C Iis small
and sin a is also small 3



Propeller torque, Q = rh.f r. dF;, and

power, P = ®©.Q = 2.z.n. Ir. dF;

Propeller Power, d/2

P=2mnn%Y p.n2d2m.j [J2 +(2.7.r/d)?](C sin ¢ + Cycos ¢ ).
0 r.c.dr

In the core region betweenr=0 tor=r ; may be
neglected for all practical purposes. Hence,

Y
Cp =.] [J2+ (2.mr/id)2](C, sin ¢ +Cpycos ¢). r/d.
r,/d c/d. d(r/d)
Thus Cp Is a function of J, advance ratio for a given
propeller shape i.e.C | and C,



The above equations for thrust and power coefficien ts
may be replaced by replacing the factor

[J2+ (2.w.r/d)2]1=J32 (1 + cot? ¢) = I/ sin?¢

d/2
Cr=J%2d2.{m[[(C, cot ¢-Cp)/sin ¢]c.dr—A,]}
1
d/2
Co=nm.J%d?|[(C, +Cp.cot ¢)sin 6].c.r. dr
M1

Now, the gliding angle ¢ isdefinedastan €=Cp/C_
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The efficiency of the blade element may also be wri  tten
down as
Ne = tan o/ tan (a + ¢g)

The maximum efficiency may be given as

T € € -
tan(z_-é)__(lﬂtanz)Nl—“emi—-2e

(Re1)max = N T 1+
tan (Z + -2-) (1 + tan 5 ,

The last two expressions are valid for small g only




The efficiency plot shown above shows for e = 0 we get, ng
= 1 independent of . It can be proved that, as visible from

the plot that the curves are symmetrical with respe ct to the
line, B=n/4-¢/2.

ForB=0and B=n/2-¢ wehave n,=0

Npop =[N dP1/ JdP

The propeller efficiency would assume a value of 1 for e=0
which means drag coeff. is 0. The maximum elemental
efficiency that the blade can assume is (1- 2.  g,;,) Where
emin denotes the minimum € occurring on the blade. Since
this maximum elemental efficiency can occur only at one
blade efficiency the overall propeller efficiency w Il always
be less than the maximum elemental efficiency aslo  ng as
all dP are positive . For any e<egg, the ng lies above the

efficiency curve of g5, -



_%_: External surrounding

|

Flow dogy: - Static !

i aﬂl C{)nt()ur |
—> & [
|

]

Extension of Momentum Theory 1 T
> — 1 > -
_ : | % B
If one applies change of velocity - s S - —_
. o — —
component in all three — — -
. . . arge distance
directions i.e. changes are i mlw

designated v ;, , w, , uy - as the ) _,/fﬁ;{f:“ Estmunii;jm
three components after the - - oe |
actuator disc. The energy

equation can now be derived as

upstream of the actuator disc :

p/l2.v2+p, =pl2[(V+V)? + W2 ]+ pq - upstream equation
pl2. [(V+V)2+ w2+ u2]+py,=p/2. [ (V{2 + V2 + W2+
U;?]+pe
------- Downstream

Where one may write p, = p4 + p’ over the disk cross section



The velocity components v, w, u are small and their second order
terms and the differences of the second order terms are negligible
compared to those of the main velocity components.

Now, if energy equation is applied between the stat  ions oa-a to 1-1
upstream of the actuator disc, we get :

p-po, (VEHV)tWIHUL VY PPy ViV AV )WY
y 29 29 7 29

In the above equation w,? is of the fourth order and u ;% = u?
and their difference is of the third order. The basic
equations of the Momentum theory established earlier are

not sufficient or intended to determine the unknown
functions v, v ;, u at the radius r. To determine these
unknowns it would be necessary to set up the differential
equations governing the motion of the fluid and to solve

them on the basis of a given propeller shape.
10



The simplest set of plausible assumptions is the f ollowing : (1) The
axial velocity components vand v ; are assumed to be constant over

the entire cross sections. (2) The tangential veloc ity components u of
the immediate downstream of the actuator disk area  ssumed to be
proportional to the distance r from the propeller a XIsu=r.o .The
assumptions leads to v, v ; and u/r by certain average values. The first
assumption leads to v=%v , by virtue of earlier theory. Note thatv  ; and
®' are the axial and tangential values imparted by the actuator disc on
the fluid.

Accordingly we can write :

a/2z | “d/2

fuzdS 21:'/ 2rdr=— 27rw"2/r3dr~—27:-1:«:"21 d\* _ w'*d?
- 4\2 8

0
d/2

frudS 2w[r2udr-—2rn-w [r3¢?r=°.i’8dj’s
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Thus, thrust as per momentum theory may be written as .

T=ps(v+?2-!)v1

And, power put in by the actuator disk is :

P=pS<V+% mf‘fgf
— Uy | i} o A2
P—ps(v+-§)l(v+-§- vl+w216]
U1 w’
Or = —_— S
P T(V+2)+P2w
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Thus the (induced ) efficiency of a propelleras AD T s

- _ TV 1 — o' /2w
e P 1 —I— 01/2V

Or, n = TV . 8V‘UI . 4:Jf)1 . J2 vl/V
. P_ ww’ d? mre'd 2 ’/&J

A set of new Thrust Loading and Power Loading ared  efined as :

2T . 2P
PV%Sj Y 76T
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The parameters Cr and Cr are connected with = and o by

_ T _ TJ? o
- P PJ3 *
Cr = oo =y = g7

Note that the ratio /o equals the induced efficiency
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Introducing the dimensionless parameters r and o, Eqgs.

can be written as
V1
(1 + ZV) %
. | 1 m OJ’
’ 2(1 ' 2V)2Jw

“ 2 .12 :
=201t 5p) [ (4 5) g dn ] = (g +os

Exit induced velocity v may be found from :

-.%
|

2 _
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The induced whirl speed ® may be found from :

w J? o 2J %q _ 2J%¢ ,
w w14 0,/2V 2(\/r+1+1) T’ T(\/T+1q1

A unique relationship between the thrust, and torqu e loading and
efficiency can now be written down as :

. 2
? =l WrFI1+ D) ‘:21712_(\/f+1-—-1)

T N

As a first approximation the relation between T and m may be
written as : 9

R
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In this theory, the induced flow due to lift produc tion on a blade is
actually computed. For this purpose, it is noted th at in a momentum
theory, thrust can be expressed in terms of induced velocity. If the
number of blades is B, the total elemental thrustf  rom simple blade
element theory (omitting term) is:

B.dT = B.c.L.cos¢, = B.C, %p.VRZC.dr.cos¢O

where ¢, is defined in fig.. Note that the induced velocity in the
thrust directionis Vv, .COS¢

Therefore, by momentum theory, the total elemental thrust is also
given by

B.dT = p.(2..r.dr).(V + v,cosg, ).(2v.cosg, )
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Equating the two equations we find that:

B.C .cV¢
v, =
8..r(Vi+v.cosg )

To simplify it is assumed that the angle «, Isvery small.
Hence: _ _ _
Sing, = SIN(@+ ai)= SIN@ + ai .COSP
_Vr+V. cosg,
VR
Using tanai = V. /VR ~q; and CI — ao(,b’ - ¢ - ai)
Vi Bc a,(f-ai-ao)

We get,

—a =

VR 8ar Sinai + a. cosai
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Define the solidity ratio, as the ratio of totalb  laded area to the
disk (swept) area:

= BCR BC o X:L
R’ ﬂR R

A quadratic equation is arrived at for  q;

ai°cosg + (Sin ai +M).ai -E(ﬂ-ai): 0
8X 8X

The solution of which is:

{-(Sinai )+\/(S|na. %99 Y2 4 4cos ;(ﬂ-ai)}
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If the following approximations are used :
cosai~10 sina:=Vi/V, X V, =V, X
where V., is the tangential velocity at the tip and x = r/R

the induced velocity V; = ai-Vt .X can be found from the egn.s

vi:vt{wv a0”>+J(V 2 2 (5 a)}

2V 2V

It is used frequently to evaluate the induced veloci ty on helicopter
rotors in vertical climbing flight. p-a
= |

Under low thrust conditions % 8.X.9n i

1+

Simplifying for & ||, = Ig_¢ a,0
14 X.Sing

|12

G-a 21




The thrust and the torque gradients are finally giv. en as : (ref : Revised

BET)
dc,
= 3.88x° .¢.

dx W+

dC
Q _— 3
——==1.94x" ..
dx 7o
Where,

cos’ «,
Vi = coS ¢ (G cosg, —C4Sing,)

cos’ «,
Vo = o~y (c cosg, +C,SiNg,)

b= +q
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End of Propeller Chapter
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