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Propeller Theory -
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Propeller Theory -

Blade Element Theories



It is assumed that each blade 
element (airfoil shape) of a blade 
uses its proportional share of 

Propeller Blade Element
Assume that two cylindrical surfaces around the axi s of rotation and 
radially only small distance dr apart, cut the propeller blade at a 
radius r from the axis. The flow is coming into this element  with an 
axial velocity V, while the propeller blades are ro tating with angular 
velocity ω rad/s
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uses its proportional share of 
the power and the torque 
(tangential force) supplied to it 
and creates thrust for propelling 
an aircraft. Thus the aggregate 
amount of thrust can be 
designed and predicted by 
integration from the elemental 
considerations



Propeller Blade Element The blade elements 
are assumed to be 
made up of airfoils 
(chord = c) of known 
lift, Cl and drag, Cd
characteristics. In 
practice a large 
number of different 
airfoils are used to 
make up one 
propeller blade. Each 
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propeller blade. Each 
of these elements 
shall have its own lift, 
Cl and drag, Cd
characteristics. The 
thrust, dT of an 
element of radial 
length dr is made 
from an airfoil of lift, 
dL and drag,  dD



From elemental considerations

Thrust produced,  
dT = dL cos φ – dD sin φ  

= ½ ρ VR
2 c.dr. (C l cos φ – Cd sin φ)

Torque supplied , 
dQ =  (dL sin φ + dD cos φ). r 
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dQ =  (dL sin φ + dD cos φ). r 

= ½ ρ VR
2 c.dr.(C l sin φ + Cd cos φ)

Substituting for resultant velocity, 
VR = V∞/ Sin φ ,  and 

for dynamic head, using q = ½ ρ V∞
2



(   -  )l d2
C  cos C  sin

sin
q.c.dr

dT φ φφ φφ φφ φ
φφφφ

=

( )   l d2 C  sin + C  cos 
sin

q.c.r.dr
dQ φ φφ φφ φφ φ

φφφφ
=

c.dr
φ φφ φφ φφ φ

R

∫

Elemental Thrust

Elemental Torque
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0

. (   -  )l d2
C  cos C  sin

sin
c.dr

T = q.B φ φφ φφ φφ φ
φφφφ∫

0

(   )l d2 C  sin + C  cos
sin
c.r.dr

Q = q.B φ φφ φφ φφ φ
φφφφ

R

∫

Blade Thrust

Blade Torque

Where, B is the number of blades



Thus, the net thrust and the torque are seen to be directly 
proportional to the number of blades, B and the cho rd, c.

This is not quite true in practice , as more the number of 
blades and wider the chords it has greater surface area, 
flow blockage and  higher aerodynamic losses. 

Thus optimum number of blades need to be found 
separately and not from the blade element theory .

The blade element efficiency, 
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The blade element efficiency, 
ηel = Thrust power produced /  Torque power supplied

.

                    

l d

l d

C   cos  - C  sin 
C  sin  + C  cos el

l d

l d

v.dT V
= =

2πn.dQ 2πnr

C  cos  - C  sin 
= .tan

C  sin  + C  cos 

φ φφ φφ φφ φ
ηηηη

φ φφ φφ φφ φ

φ φφ φφ φφ φ
φφφφ

φ φφ φφ φφ φ



Applying maxima condition it can be shown that 
maximum efficiency, ηel-max occurs at 

for a blade element airfoil characterized by its Cd & Cl

The estimations from simple 2 -D blade element theory is 

d

l

Cπ
= -

4 2.C
φφφφ
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The estimations from simple 2 -D blade element theory is 
within 10% of the actually obtained performances. T he 
theory as stated above does not account for interac tion 
between various cross-sections  and does not  
incorporate secondary flow effects and tip flow, pr esent 
in any propeller operations. However, it provides a  quick 
approximate estimation of propeller performance, wh en 
propeller aspect ratios (span/chord) are quite high  (>6).
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Thrust coefficient curves for a NACA propeller
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Efficiency curves for a typical propeller with Thre e Blades.



Power 
coefficient 
curves for 
a typical 
propeller
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Cs, the speed power coefficient is used for first c ut propeller selection



Cs, the speed power coefficient , defined by,

Cs = (ρ.V5/P.n2)1/5

Knowing C p as a function of J , C s can be calculated 
from

Cs = J/Cp
1/5
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Cs = J/Cp

The usefulness of C s is in the process of defining it  
-- the diameter was eliminated



Advanced (or Revised) Blade element  theory

Flow over airfoil shaped bodies experience an induc ed 
flow that finally is seen at the trailing edge as a n effect 
popularly known as downwash . Overall effect of the 
induced flow changes the lifting strength, L, and h ence 
the strength of the vortex (or circulation) around the 
airfoil. The effect of this induced flow is felt im mediately 
upstream in  flow past the blades. This results in change 
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upstream in  flow past the blades. This results in change 
in both the direction by αi from ( α+αi) to α , and the 
magnitude of the inlet resultant velocity, from V r to  VR

by an induced velocity v i (considered perpendicular to 
VR). Thus, final angle of attack, α <(α+αi) and final 
velocity, V R < Vr . Inflow angle changes from φ to φ + αi . 
These changes are all captured in the model present ed 
below (Fig.).
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Revised blade element velocity and force diagram



From the figure the contribution of a 
blade element to the blade thrust T & 
the torque Q, are

dTel = dL cos ( φ + αi) - dD sin ( φ + αi) 

dQel = r. dFQ = r. [dL sin ( φ + αi) + dD cos ( φ + αi)]
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dQel = r. dFQ = r. [dL sin ( φ + αi) + dD cos ( φ + αi)]

Where,

dL = ½ .ρ.VR
2.c.Cl .dr ; dD = ½ ρ VR

2c.Cd dr

Cl = a (β- φ - ααααi ) , 

where, a is the lift-curve slope ( Cl vs αααα ) of the aerofoil.



•Effect of the induced flow is                                         
the induced angle αi. 

•Induced flow angle αi is                                      
unknown  quantity , without                                       
which the thrust and  the torque estimation, (i.e. 
revised from the simplified blade element theory) , is 
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not possible. 

• Thus the first task at hand is to find out a method  of 
estimation of the induced flow effects. To do that we 
need to adopt a few simplifications first.

• If we assume αi and the drag to lift ratio, C d / Cl are 
very small, then V R = Vr ,



then
dTel = B. ρ /2. Vr

2 .c. a. (β - φ - αi ). cos φ. dr
Applying momentum principles to the differential 
annulus and letting V i = Vr. αi

dTel = ρ (2π.r .r)(V+V r αi .cos φ )2.vi .cos φ
Equating the two above equations yields the general  
equation involving the induced angle at an element,  

αi
2+ αi(.λ /x+ (σ.a.Vr/8.x.2VT))- σ.aVr/8.x2.VT.(β- φ) = 0
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αi + αi(.λ /x+ (σ.a.Vr/8.x.2VT))- σ.aVr/8.x2.VT.(β- φ) = 0

where, by definition

λ = V/ω.R         Vr = VT√ (x2+λ2)  
via= Vi Cos (φ+ αi) σ = B.c/π.R        
tan φ = λ/x v it= Vi Sin (φ+ αi)
VT = ω.R              x = r/R

tan αi = Vi/ VR



( )
      
     

      

2
r r r

i 2 2 2
T T

σ.a.V σ.a.V σ.a.V1 λ λ
α = - + + + + β-φ

2 x 8.x .V x 8.x .V 2.x .V

Induced angle of attack on the element

Now by definition
Thrust coefficient, CT = T/ρn2D4 and,
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Thrust coefficient, CT = T/ρn2D4 and,
Power coefficient, CP = P/ρ n3D5

where, nD is called reference vel.
(in lieu of V∞),  and       

D2 is the reference area
(in lieu of A)



The angle of the resultant flow, 
φ   = tan -1 (V/ω.r) = tan -1 (J/π.x)
where, J is the advance ratio , J = V/nD
Now, if we write φo= φ + αi ;  and
Ve=Vr.cos αi = 2πr.n.cos αi / cos φ ;  and, q = ½ ρ. Ve

2

For B no. of blades , the elemental thrust and torque are
dTel = q.c.B.dr.(C l cos φo - Cd sin φo)
dQel = q.c.B.dr.(C l sin φ + Cd cos φo)
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dQel = q.c.B.dr.(C l sin φo + Cd cos φo)
if we also substitute, ( to encapsulate the flow parameters ) 
ΨT = (cos αi / cos φ)2.(Cl cos φo - Cd sin φo) and ,
ΨQ = (cos αi / cos φ)2.(Cl sin φo + Cd cos φo) and ,   
using all the equations and definitions contained i n the 
above Eq.s  we get the elemental thrust and torque as:

dTel = ½ . ρ.(2.π.n)2 c.B.R3.x2.dx.ΨT
dQel = ½ .ρ.(2.π.n)2c.B.R4.x3.dx.ΨQ



The elemental thrust and the elemental torque coeff icients can 
now be written down in terms of geometric and flow parameters 
as

2 2
2T

T T

dC c.B.π .x
= . Ψ = 3.88.x .σ.Ψ

dx 8R

2 3
3Q

Q Q

dC c.B.π .x
= Ψ = 1.94.x σ.Ψ

dx 16.R
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Q Q= Ψ = 1.94.x σ.Ψ
dx 16.R

Which give the radial variation of  the Thrust & To rque coefficients . 
Every propeller blade shape is characterized by suc h radial 
variation. In modern propeller blade designs such r adial variations 
are arrived at first as design requirement and then  the blade shape 
is found, often using CFD techniques. Such a design , is known as 
‘direct solution ’.
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Integrating them along the blade length gives the  propeller 
Thrust and Torque Coefficients .

∫
1

T
T

0

dC
C = dx

dx ∫
1

Q
Q

0

dC
C = dx

dx

In dimensionless full form the thrust and the torqu e 
coefficients are related to C and C
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coefficients are related to C l and Cd

CT = π/8 ∫ (J2+π2x2). σ. [Cl .cos(φ + αi ) – Cd .sin(φ + αi
)].dx 
CP = π/8 ∫ (J2+ π2x2) σ. [Cl.sin(φ + αi ) + Cd .sin(φ + αi )].dx



Typical variations of C T and CP, as determined by controlled 
experiments for specific propellers
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Fig. shows the induced velocity at the propeller pl ane in more 
detail. v i is normal to the resultant velocity Vr and has a ta ngential 
component, vit and an axial component, via. From the eqn.s we can 
also solve for vi the induced velocity, and αi the induced angle of 
attack



l R
i

i

B.c.C .V
V =

8π.r. sin(  + α  )φφφφ

8. .sini x
β φ

α
φ

−
=

The induced effects are thus captured as :
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8. .sin
1

.

i x

a

α
φ

σ

=
+

--- assuming αi to be small


