
Compressor Performance Map Generation and Testing

per SAE J1723

A Senior Project
presented to

the Faculty of the Aerospace Engineering Department
California Polytechnic State University, San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Bachelor of Science

by

Jeffrey Lee Freeman

February, 2011

c©2011 Jeffrey Lee Freeman

A MATLAB program was written to plot compressor performance maps for a set of test
data that was collected in accordance with SAE J1723 at Vortech Engineering, Inc. Paxton
Automotive Corp.’s N2500 supercharger was used as a case example for the program, which
was carried through from test stand installation to finalized compressor performance map.
A sequence was also developed to interpolate the efficiency of the compressor for a given
operational setting. The program was shown to be a great improvement from the previously
applied technique for accomplishing the same tasks; it is more accurate in plotting the given
data, and the time spent performing the process is reduced by approximately seven hours.

Nomenclature

A = area [in.2]
CP = specific heat at constant pressure of air, 6008.065 ft− lbf/slug −R
D = pipe inner diameter [in]
P = pressure [in.Hg, psi]
PR = pressure ratio, Po,2/Po,1

Q = volumetric flow rate [ft3/min]
T = temperature [◦T, R]
W = SAE corrected mass flow rate [lbm/min]
ṁ = obeserved mass flow rate [lbm/min]
v = velocity [ft/sec]
ρ = density [lbm/ft

3]
η = isentropic efficiency [%]

Subscript
o = total, stagnation condition
1 = inlet section
2 = discharge section
baro = barometric (station)
BM = bell mouth

I. Introduction

Air compressors are engine components whose sole purpose is to increase the pressure of the air that passes
through them. By pressurizing the air prior to the intake of an engine, the fuel is capable of combusting

more rapidly and effectively. Compressors are used in the transportation industry both for jet engines and
as automobile superchargers. The three main metrics of performance for an air compressor are the range of
mass flow rate, W , and pressure ratio, PR, in which it can operate and the isentropic efficiency, η at which
it does so. The consumer has a particular interest in finding an air compressor that performs efficiently
at the range of W and PR in which the engine operates. This report focuses primarily on automotive
superchargers, but the processes could be applied without much modification to jet engine air compressors
as well. Particularly, the equations used apply to centrifugal, nonpositive displacement superchargers.

In order to determine whether to use a particular compressor, the consumer will typically ask to view
a compressor performance map, which is a contour plot comparing the three main performance metrics.
Figure 1 highlights the key items of importance in one of these maps. The lines that start horizontal on the
left and droop to vertical on the right are constant speed lines, where the speed of rotation for the impeller
is constant. As the speed increases, so too does the pressure ratio and the potential mass flow rate. A
supercharger’s performance can fluctuate for a given speed based on the amount of restriction present in
the pipes after its discharge. The orange line on the left represents surge, which is defined by severe air
flow reversal.1 Essentially, surge is the highest pressure and lowest mass flow rate that the supercharger can
produce at a given speed, and it is caused by the greatest amount of blockage in the discharge flow. On the
other end of the constant speed line is a blue line which represents choke, which occurs when no blockage is
present in the discharge flow. A supercharger operating at choke is producing little to no pressure rise, but
moves a maximum amount of air. The green shape in the middle is a peak efficiency island, which defines
the region of mass flow rate and pressure ratio for which the compressor is most efficient. Knowing this

1

region also tells the consumer what speed the supercharger should operate at for optimal performance and,
hence, how to design the gearbox. The location and magnitude of the peak efficiency island is easily one
of the most important aspects of a supercharger in that if everything else is the same, the consumer will
select the product with the higher efficiency and/or the one which is most efficient at the desired operating
conditions.

Figure 1: A typical compressor performance map highlights key features of its corresponding
compressor.2

A. SAE J1723

The Society of Automotive Engineers (SAE) created standard number J17231 in an effort to create a method
of comparison for all superchargers on the market. This standard specifies the equipment that should be
used while testing superchargers for their performance, basic definitions of each of the three performance

2

parameters, corrective formulae so the elevation and atmospheric conditions during the test do not affect
the end result, and methods for presenting the results.

B. Preliminary State of Affairs

Before this project, compressor performance map generation at Vortech Engineering, Inc. was a slow, un-
pleasant experience whose final product often misrepresented the calculated performance of the supercharger.
Two waves of technology had already passed through the company for this task; the first was hand drawn
and the second was computer generated using splines in Vellum. Splines are a drawing tool in which the user
can set the location and slope of a curve at multiple key points. With anywhere between ten and twenty long
splines that needed to match a data field exactly, this method took one person an entire day of headaches
and frustration struggling to get the curves to pan out the way he or she wanted them to, and the accuracy
to which the end result matched the data from which it was derived relied entirely on human capabilities.
This method will be referred to as the spline method.

C. Objective

This project was expected to improve upon the spline method for generating compressor performance maps
in a way that maintained the smoothness of the curves. The key items for improvement were speed of
generation and accuracy of the final product, and both could be achieved by using a computational plotter
such as MATLAB. Furthermore, a numerical method for extracting the efficiency of the supercharger for a
particular mass flow rate and pressure ratio was desired so that a tested compressor could then be used in
an engine simulation.

II. Apparatus and Procedure: Hardware

This section discusses the tools and techniques used to produce the raw test data for an air compressor.
Most of these were already established before the current project began and they are listed here, courtesy
of Vortech Engineering, Inc., to allow for future reproduction of the test results.

A. Test Unit Installation

The test unit consisted of the test stand and the control panel. A simplified rendition of the test stand
is shown in Fig. 2. Ambient air entered through the calibrated flow nozzle (bell mouth), was pressurized
by the supercharger, and was then discharged. The supercharger was powered by a 250 HP electric motor,
and the temperature was regulated by an active oil system. The flow rate was regulated by a set of control
valves downstream from the discharge section. Pressure and temperature measurements were taken at the
bell mouth, inlet section, and discharge section according to SAE J1723. Compressor speed and torque were
also recorded, along with a number of oil temperatures and pressures that were used to ensure that the setup
was operating appropriately.

1. Permanent Structures

The supercharger was run by a 250 HP electric motor that ran a driveshaft into the gearbox, which had a
step-up ratio of 3.5. Oil was used as an active cooling system to regulate the temperature and lubricate the
supercharger, motor, and gearbox. The shaft speed was measured using the laser sensor shown in Fig. 3. All
of these items were permanent additions to the test room.

2. Supercharger

The supercharger discussed for the purposes of this report was a Paxton Automotive Corp. model N2500
(Paxton is a subsidiary of Vortech Engineering, Inc.). The N2500 is a centrifugal compressor which, according
to the language of SAE J1723, is a nonpositive displacement supercharger. This is in contrast to positive
displacement superchargers through which a set amount of volume is displaced with each revolution.

With the gearbox and motor permanently mounted into the test room, the supercharger was the first
object to be installed for any particular test. First, it was mounted onto a backing plate and indicated to
its surface in order to make it flush and level. A tolerance of approximately 0.008 in. total deviation from

3

Figure 2: The actual experimental apparatus resembled this schematic.

center was allowed. Next, the backing plate with supercharger attached was mounted onto the gearbox with
special care to align the drive-spline. With the supercharger firmly in place, the oil connections and air ports
could be established. Figure 4 shows a mounted supercharger that is ready to test.

3. Inlet Section

The inlet pipe was connected directly to the the inlet of the supercharger using silicon-rubber hose fittings.
It spanned between the calibrated flow nozzle and the supercharger inlet. In the streamwise direction, it
first had a pressure tap and then a set of three thermocouples. This inner diameter of the inlet section was
sized in correspondance with SAE J1723.

4. Calibrated Flow Nozzle

The calibrated flow nozzle, or bell mouth, was used to intake air with minimal pressure loss and to present
a repeatable method for determining the flow rate through the supercharger. It was mounted onto the end
of the inlet pipe. The size of the nozzle was set by the size of the inlet pipe. In this experiment, the bell
mouth had a throat area of 38.760 in2. Temperature was measured in front of the inlet and the difference
in pressure accross the nozzle was measured using a manometer. A picture of the flow nozzle used in this
test with the corresponding sensors is shown in Fig. 5.

5. Discharge Section

The discharge pipe was approximately the same size as the discharge orifice of the supercharger and made
of steel to withstand the high temperatures associated with air compression. As with the inlet section,
there was a pressure tap upstream and a set of three thermocouples downstream to measure the discharge
pressure and temperature. The entire discharge section needed to be secured with nylon webbing that was

4

Figure 3: This laser sensor was used to measure shaft rotation speed.2

Figure 4: The supercharger in the test cell is well hidden by other test equipment.2

5

Figure 5: The calibrated flow nozzle acted as an inlet for the system.2

rated for temperatures in excess of 350◦F because violent vibrations and high temperatures occurred during
high-speed surge conditions.

At the end of the discharge section, there was a pair of control valves that were used to regulate the
flow rate within a particular speed. One valve was actuated by a button with slow reaction time, and it
controlled a majority of the area. The other valve was actuated with a knob. This smaller valve was used
for fine tuning near surge conditions.

6. Calibration

Each sensor had to be calibrated to ensure that it operated within the tolerances specified by SAE J1723.
Specifically, torque must be measured within ±0.5%, supercharger shaft speed within ±0.2%, temperature
within ±1 ◦C, pressures within ±0.5 kPa, and air flow rate within ±1% of the measured value. The torque,
speed, pressure, and air flow rate sensors were all calibrated by the manufacturer and inspected as needed
to ensure quality. The thermocouples were calibrated on site every time they were installed. This was
accomplished by letting the thermocouples come to equilibrium in an insulated cup of ice water. If the
thermocouple read ±1 ◦C, then it passed the go-nogo test and could be included in the apparatus.

B. Test Procedure

After the hardware was installed, the actual test could begin. The oil pump and temperature regulator were
turned on along with the room fan and the electric motor. Hearing protection was used by the operators.
Right before the supercharger was started, the speed sensor was tared. Throughout the entire test, four
items were checked to avoid emergency: first, oil temperature was not to exceed 250 ◦F , second, the oil
pressure was to be relatively constant at around 45 psig, third, the engine load must not reach the red line,
and fourth, the bell mouth pressure was to be kept low enough so the meniscus in the manometer would not
overflow.

Because the system was regulated by oil, it needed to be warmed up appropriately to not damage any

6

of the equipment. This was accomplished by stepping the speed from 0 to the first test speed in intervals of
5,000 rpm with approximately 5 minutes between each transition.

The test itself involved recording a collection of data for a predetermined number of nearly equally spaced
control valve settings ranging from surge to choke for several supercharger speeds. The test presented in this
report used seven control valve settings and seven speeds, but any set of numbers greater than 1 could work
as long as the number of control valve settings does not vary from speed to speed. A denser consentration
of data points tested yielded greater accuracy but came at the cost of more time spent performing the test.

The minimum amount of data recorded for each point included the following: impeller shaft speed
(supercharger speed), n, barometric pressure, Pbaro, ambient (bell mouth) temperature, TBM , three readings
of inlet section temperature, T1, three readings of discharge temperature, T2, change in pressure across the
bell mouth, ∆PBM , inlet section pressure, P1, discharge pressure, P2, bell mouth area, ABM , inlet pipe
diameter, D1, discharge pipe diameter, D2, and torque. Additionally, oil pressures and temperatures were
also recorded to monitor the apparatus. The torque was not used in the primary calculations but was used
for troubleshooting as it provided another method for finding the efficiency of the supercharger through
mechanical power. Barometric pressure was determined no more frequently than at the beginning of each
speed run, but usually occured only once in the morning and once in the afternoon because variations
throughout the day were miute. Impeller shaft speed did not need to be exact because of the relatively large
tolerances, so the recorded speed was rounded to the nearest thousand rpm. It was also necessary to record
the area of the calibrated flow nozzle and the inner diameters of the inlet and discharge pipes, D1 and D2,
respectively.

1. Finding Barometric Pressure

A small sequence of events was necessary for determining the barometric pressure. First, the current, local
altimiter pressure was found online for the naval base at Pt. Mugu.3 Then the altimeter pressure was
converted to station pressure according to the altitude of approximately 2m using an online converter.4

Finally, the station pressure was recorded with the other raw data.

III. Computational Methodology

The MATLAB sequence, named CPM (Compressor Performance Mapper), was broken down into three
steps. First, the raw data was used to calculate the three main performance parameters in a code called
CPM compute.m. Then, those parameters were plotted. As somewhat of a separate step, the plotted
results could be interpolated to find the efficiency at any point in the domain. Both of these portions were
accomplished by the main code, called CPM.m.

A. Finding Performance Metrics from Raw Data

1. Preliminary Calculations

Before the main performance parameters could be calculated, the total pressures and temperatures were
needed. It was important to modify these equations as needed to make the units match appropriately. First,
the inlet and discharge temperatures were taken as the average of the three recordings at each location and
then converted to Rankine. All of the pressures were absolute and calculated in inches of mercury. The inlet
gauge pressure was converted to absolute using

P1 = Pbaro −
P1,gauge

13.608
(1)

A specialized form of the YFCA equation was used to find the mass flow rate through the calibrated
flow nozzles.5 It assumes that the velocity of approach factor is equal to 1 because the pipe diameter
approximates infinity for the shape used. Furthermore, it assumes that the coefficient of discharge multiplied
by the adiabatic expansion factor is approximately equal to 2.06. These assumptions resulted in a simple
and useful equation for finding mass flow rate,

ṁ = 2.06ABM

√(
17.35

Pbaro

TBM

)
∆PBM (2)

7

With the density at any location known by the temperature and pressure through the ideal gas law, the
volumetric flow rate could be found using

Q =
ṁ

ρ
(3)

Next, dimensional analysis shows that the velocity at any point in the apparatus was known from

v =
Q

A
(4)

where the area of circular cross sections was

A = π (D/2)
2

(5)

Finally, the total pressure was derived from Bernoulli’s Equation,

Po = P +
ρv2

2
(6)

and the total temperature was derived from the First Law of Thermodynamics,

To = T +
v2

2CP
(7)

2. SAE Defined Performance Parameters1

With the mass flow rate and total pressures and temperatures readily available, the equations provided by
SAE J1723 were used to find the performance parameters. The SAE corrected mass flow rate, W, was found
using

W = ṁ

(
29.236 in.Hg

Pbaro

)√
T1

537◦R
(8)

the pressure ratio was simply

PR =
Po,2

Po,1
(9)

and the isentropic efficiency was

η =
To,1PR

0.286 − To,1
To,2 − To,1

∗ 100% (10)

B. Plotting the Map

The basic set of performance parameters could not be simply plotted using MATLAB’s contour function
because it created sharp corners where rounded edges were expexted. An example of what this inadequate
method produces is shown in Fig. 6. Therefore, an alternate method was desired for appropriately smoothing
the corners while still fitting the physical phenomenon that the data represented. Essentially, the program
needed to predict where the curves should be placed for the given data in a way that matched the results
people produced in the past when they drew the maps by hand. It also needed to be capable of filling in an
arbitrary domain which may be convex or concave.

The solution was John D’Errico’s gridfit.m, which uses the gradient of the data to fill in a number
of nodes within a rectangle encompassing the domain while balancing smoothness with accuracy.6 Its
smooth parameter allowed the user to define the level to which the result preferred smoothness or accuracy;
essentially, it added the “human judgement” input. The only undesirable aspect of this program was how
the contours within a convex portion of the domain were modified near the edges in order to extrapolate to
the edge of the rectangle. This particular drawback was deemed acceptable because the consumer is more
interested in the peak efficiency island than the performance at the boundaries of operation.

The output of gridfit.m is a set of matrices corresponding to the x, y, and z axes that are ready to be
used by contour to plot a smooth surface of rectangular cross-section. This rectangle must next be trimmed
to show only the original domain, and more of D’Errico’s functions are used for this purpose.7 First, the
perimeter of the domain is collected into a pair of vectors which are triangulated into a simplicial complex

8

Figure 6: The sharp corners from MATLAB’s contour function were undesirable.2

using poly2tri.m. Then the complete collection of nodes produced by gridfit.m are checked by insc.m,
which determines whether a data point is inside the triangulated polygon or not. Any points in the grid
that lie outside of the polygon are erased. The functions simplicialcomplex.m and buildbccdata.m are used
by poly2tri.m and insc.m.

Finally, the figure is created with a combination of several plots. The trimmed grid data is used to create
efficiency curves using contour, the speed lines are drawn as separate two-dimensional plots, and the surge
and choke lines are added in a similar fashion. MATLAB’s clabel can be used to add efficiency labels to the
plot and legend is used to produce a legend calling out the different components of the figure.

C. Interpolation: Numerically Reading the Plot

The use of gridfit.m also made interpolating between the data points rather easy because its output conforms
to the requirements for MATLAB’s interp2, which performs bilinear interpolation within a grid. For each
desired interpolation point (W, PR), the point is first checked to be within the domain using insc.m, and
then is compared to the grid-shaped, smooth data to find the matching efficiency.

IV. Producing the Map

A. Necessary Programs

The method presented in this report that was used to produce supercharger performance maps needed the
following software: MATLAB, a text editor such as Microsoft Notepad, an image editor such as Microsoft
Paint, and a CAD program such as Vellum. Each program could be replaced by another program with similar
functions. For instance the Microsoft programs could be substituted by their Macintosh counterparts, or
MATLAB could be replaced (with some modification to the codes) by Octave.

B. Data Input

After the test was finished, a large amount of data had to be input into MATLAB in order to plot the
performance map. This was done by copying all of the data into a text file with 15 columns, one for each
of the pieces of information recorded at each point (See Appendix A). The first column, title “r s”, was a
two-digit number where the first digit denoted the index for the impeller shaft speed, or “speed Run” where 1

9

was the first speed run, 2 was the second and so on. Meanwhile, the second digit denoted in a similar fashion
the control valve “Setting”, where 1 was the first setting for each run (surge), 2 was the second setting, and
so on. The filename and the first line of the file were the same and defined the test number for in-house
bookkeeping. This input file was read by MATLAB through a code, named CPM read data.m, which
uses Gerald Recktenwald’s readColData.m.8 These codes collectively convert the data into a MATLAB
structure, where each element of the structure contained all the information associated with one speed/setting
configuration.

C. Running the MATLAB Program

The entire collection of MATLAB codes could be run through the script titled CPM Call.m. The variables
that could be changed are titled fname, smooth, plot on, legstring, clabel on, interp on, XI, wi, and pri.
fname is a string which is equal to the filename of the input file. smooth is a parameter that is used by
John D’Errico’s gridfit.m to set the balance between smoothness and accuracy of the efficiency contours.6

plot on, clabel on, and interp on are all logical operators equal to either 1 for on or 0 for off. plot on
determines whether or not to plot a map, clabel on defines whether or not to include contour labels in the
plot, and interp on defines whether or not to numerically “read” the map by interpolating for the efficiency
of a particular mass flow rate/pressure ratio pair. legstring is a cell of strings that denote the impeller speed
of each speed run as it will appear in the legend. XI is a two-column matrix of data points where the first
column is mass flow rate in lbm/min and the second column is pressure ratio. This matrix is a list of the
points on the plot for which interpolation is requested. If XI is created from a meshgrid of two vectors,
those vectors need to be included as wi and pri for the mass flow rate and pressure ratio locations at which
interpolation is requested. All inputs must be defined in the calling sequence, even if the function for which
they operate is turned off.

Since running the program takes only a few seconds, the map was generated first without labels because
the end result looked better if the labels are added in Vellum, and then second with the labels so there was
no confusion about what efficiency each contour represents. After all of the variables are set appropriately
for the test, running CPM Call.m will result in a MATLAB figure with all of the curves for the performance
map, shown in Fig. 7, as well as the efficiency of any requested interpolation points.

Figure 7: This unaltered MATLAB output does not include efficiency contour labels.2

10

D. Modifying the Image

After the MATLAB figure was saved as an image file such as a bitmap, it was opened into Microsoft Paint. In
Paint, the figure was cropped along the axes of the chart so that only the curves and gridlines were included.
The x-axis location of the crop was to be one gridline beyond the furthest curve. Also, the upper left corner
of the grid was erased so it would not interfere with a textbox which resides in that location. Finally, very
small peak efficiency islands, known as “phantom efficiency islands”, were removed at the discretion of the
operator. This cropped image was then saved as a new bitmap file, which is shown in Fig. 8.

Figure 8: The MATLAB output was modified to be inported into Vellum.2

E. Fitting the Image Onto a Vellum Template

A set of templates for the formal supercharger performance map were created to include title boxes, gridlines,
multiple x-axis units, and notes. The templates differed from one another in the range of mass flow rate and
pressure ratio. The MATLAB output figure was used to determine which template to use. The template
that was used for this particular supercharger is shown in Appendix B.

After opening the appropriate template in Vellum, the modified bitmap image was imported onto the
template. Then, the corners of the imported image were dragged until the gridlines on the Vellum template
matched the MATLAB generated gridlines to a reasonable accuracy. Next, textboxes were added where
needed to label the speed lines and efficiency contours, and the titles were adjusted to fit the current test.
The final product was then saved as a PDF in both color and grayscale formats for distribution. The
grayscale map is shown in Fig. 9, and the color version is shown in Appendix C.

V. Validation

Of the three stages that make up this project, the mapping and interpolating stages could be validated,
but the stage in which the performance parameters were calculated could only be subjected to rigorous
scientific scrutiny. Detailed investigation into each of the equations involved in this stage suggests that they

11

35k

30k

NOTES: PERFORMANCE OBTAINED AND CORRECTED IN ACCORDANCE WITH SAE J1723

hc= COMPRESSOR ISENTROPIC EFF.

Pi = COMPRESSOR INLET AIR
ABSOLUTE PRESSURE (kPa)

Po = COMPRESSOR DISCHARGE AIR
ABSOLUTE PRESSURE (kPa)

Ti = COMPRESSOR INLET AIR
ABSOLUTE TEMPERATURE (DEG.

KELVIN)
To = COMPRESSOR DISCHARGE AIR

ABSOLUTE TEMPERATURE (DEG.
KELVIN)

.286
Y = [(Po/Pi) -1]

hc= [(Ti) (Y) / (To-Ti)] X 100%

CORRECTED VOL. FLOW (CFM) =

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

P A X T O N A U T O M O T I V E C O R P .
C O M P R E S S O R P E R F O R M A N C E M A P
N O R E P R O D U C T I O N S , A L L R I G H T S R E S E R V E D

COMPRESSOR MAP
MODEL: N2500
TEST 1212D
DATE: 07/23/2010.
STD, PRESSURE=29.23 IN HgA
STD, TEMP.=537° RANKINE

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 5 10 15 20 25 30 35 40 45 50 55

Lb/Min.

LITER/Min. X

1000

CFM

25k

20k

P
R
E
S
S
U
R
E
 R
A
T
IO

P
2
c
/P
1
c

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.0

=
OBSERVED
AIR FLOW

X (99kPa)

BP
X

(Ti)

298.15 °K

CORRECTED VOL. FLOW
(LITERS/MIN X 1000)

OBSERVED
AIR FLOW

X

BP
X

537°R

(T1c)(29.23 IN HgA)

CORRECTED MASS FLOW = W Ti/537°R / (Pi/29.23)

68%
70%

65% 68%

40%

50%

59%

65%

71%

50k

45k

40k

Figure 9: The mapping stage culminated in this final product.2

12

are correct.

A. Validation: Plotting Sequence

A good compressor performance map represents the data from which is was plotted clearly and accurately.
A validation of this capability must show that the 49 data points that were collected in the test cell are
accurately depicted and that the curves between them represent reality. To accomplish this, the map was
manually checked against the calculated parameters and marked either green if the two match or red if they
do not. Then, anywhere that the curve does not behave as expected between the points is marked by an
orange, correct curve. This was done for both the map produced by the CPM program and the one made
from the old “spline” method, and both are shown in Fig. 10.

The former method for plotting the compressor performance map is shown here to have been very
inaccurate. Moreover, the level of accuracy achieved through this method depended entirely on the diligence
of the operator. By plotting the compressor map with a numerical algorithm, human error is eliminated
from the system. Unfortunately, the error that remains is more difficult to fix. The efficiency curves near the
edge of the domain are skewed because gridfit.m extrapolates to approach a level surface rather than fitting
the current trends. Mixing this extrapolation and the fact that smoothness must be maintained produces a
result where the curves just inside the edge of the domain are not what they should be.

(a) Splines (b) CPM

Figure 10: The CPM method is much more accurate than the splines method.2

B. Validation: Interpolation

The interpolation method is valid if the interpolated data accurately matches the plotted data. In order
to check this, a dense grid of data points that covers the entire domain of the map was used. After using
the interpolation calculation to find the efficiency at all of these points, they were plotted on top of the
previously generated map. If the contours from the interpolation match the contours of the original map,
then the interpolation method accurately reads the performance of the supercharger. The validation plot
described is shown in Fig. 11, which shows that the interpolated data does in fact match the original map
even at intervals in between the formerly plotted contours.

13

Figure 11: The interpolated data “reads” the map almost exactly.2

VI. Conclusion

The Compressor Performance Map program effectively generates and reads compressor performance maps
in compliance with SAE J1723. Furthermore, it performs significantly quicker than the previously accepted
method for plotting performance maps. With the program capable of producing a plot in under thirty
seconds, several renditions can be compared in a way that the manual methods could not allow. It is
estimated that a company can reduce the amount of time to create a finished compresor performance map
by seven hours if they switch from plotting with splines on a CAD program to this numerical method. In
addition, the numerically generated map fits the data almost perfectly, whereas the manually generated map
is subject to human folly. As a separate operational function, the program is readily capable of determining
the efficiency of a compressor for any given mass flow rate and pressure ratio within the tested domain. This
capability can be applied to engine system simulations in both automobiles and jet engines.

Both the plotting and the reading portions of this project could be sources of future work. For plotting,
gridfit.m could be modified to smooth perfectly within the boudaries of the domain, regardless of whether
the hull was convex or concave. The goal of this modification would be to resolve the issue with the efficiency
curves near the edge of the domain. For reading the map, the program could be optimized to be a part of
an engine simulation. If the code is being called a large number of times for individual data points, the map
“writing” portion which does the smoothing could be translated to an input in order to save a significant
amount of time per call.

Acknowledgements

This project was far from a one man show. I would like to acknowledge my family and friends, whose
support has encouraged me to pursue excellence in all of my work. Furthermore, I am grateful for Jim
Middlebrook, Rob Anderson, Jeff James, and everyone else at Vortech Engineering for assigning me this
task during my internship, mentoring me through the entire process, and allowing me to develop upon and
publish it for my senior project. In addition, I sincerely appreciate the thoughtful and unrestricted advice I
received from John D’Errico, which was paramount to my success in this project. Finally, many thanks go
out to Dr. David Marshall for being my senior project advisor and seeing this project through to completion.

14

References

1Society of Automotive Engineers, Inc. “SAE J1723: Supercharger Testing Standard”, Surface Vehicle Standard, 1995.
2Images courtesy of Vortech Engineering, Inc. and Paxton Automotive Corp., Oxnard, CA.
3National Oceanic and Atmospheric Administration. “Current Weather Conditions: NAWCWPNS Point Mugu, CA, United

States”, National Weather Service, http://weather.noaa.gov/weather/current/KNTD.html
4Brice, Tim, Hall, Todd, “Station Pressure”, National Weather Service, http://www.srh.noaa.gov/epz/?n=wxcalc_

stationpressure
5Alfano, D.. “Flow Measurement with Aid Flow Nozzles”, Garrett, Aireseach Industrial Division, April 1975.
6DErrico, John. “Surface Fitting using gridfit”), MATLAB Central File Exchange, 2005, http://www.mathworks.com/

matlabcentral/fileexchange/8998, Retrieved July 9, 2010.
7D’Errico, John. Personal Communications. July 9-14, 2010.
8Recktenwald, Gerald. “Loading Data into MATLAB for Plotting”, Mechanical Engineering Department, Portland State

University, 24 August 1995, http://web.cecs.pdx.edu/~gerry/MATLAB/plotting/loadingPlotData.html

15

Appendix

A. Input File

1212D_Input

r_s T_BM T_11 T_12 T_13 T_21 T_22 T_23 P_BM P1 P2 P_baro D1 D2 A_BM

11 60 60 60 60 105 105 105 0.03 0.05 17.47 29.91 6.987 2.600 38.760

12 61 61 61 61 96 96 96 0.16 0.20 17.15 29.91 6.987 2.600 38.760

13 61 61 61 60 92 93 92 0.27 0.40 16.71 29.91 6.987 2.600 38.760

14 61 61 60 60 91 90 90 0.38 0.50 16.30 29.91 6.987 2.600 38.760

15 61 61 61 61 88 86 88 0.52 0.70 15.70 29.91 6.987 2.600 38.760

16 61 61 61 61 85 86 87 0.62 0.70 15.41 29.91 6.987 2.600 38.760

17 61 61 61 61 83 85 85 0.68 0.80 14.93 29.91 6.987 2.600 38.760

21 61 61 61 61 129 129 129 0.06 0.10 19.13 29.91 6.987 2.600 38.760

22 61 61 61 61 116 116 116 0.23 0.30 18.74 29.91 6.987 2.600 38.760

23 62 61 61 60 112 112 112 0.42 0.50 18.14 29.91 6.987 2.600 38.760

24 62 62 61 61 108 108 107 0.58 0.70 17.46 29.91 6.987 2.600 38.760

25 62 62 62 61 107 106 106 0.73 0.80 17.07 29.91 6.987 2.600 38.760

26 62 62 62 61 104 99 104 0.91 1.00 16.21 29.91 6.987 2.600 38.760

27 62 62 62 61 98 96 99 1.07 1.30 15.08 29.91 6.987 2.600 38.760

31 62 62 62 62 159 159 159 0.08 0.10 21.25 29.92 6.987 2.600 38.760

32 62 62 62 62 142 142 142 0.31 0.40 20.88 29.92 6.987 2.600 38.760

33 63 62 62 62 137 136 137 0.58 0.70 20.28 29.92 6.987 2.600 38.760

34 63 63 63 63 133 133 133 0.80 0.90 19.45 29.92 6.987 2.600 38.760

35 64 63 63 63 129 127 127 1.09 1.30 18.05 29.92 6.987 2.600 38.760

36 64 64 64 63 127 114 125 1.30 1.60 16.95 29.92 6.987 2.600 38.760

37 64 64 64 64 119 104 119 1.53 1.80 15.36 29.92 6.987 2.600 38.760

41 64 64 64 64 198 198 198 0.11 0.20 23.81 29.93 6.987 2.600 38.760

42 65 64 64 65 176 176 176 0.42 0.50 23.58 29.93 6.987 2.600 38.760

43 65 65 65 65 167 167 168 0.74 0.90 22.79 29.93 6.987 2.600 38.760

44 65 65 65 65 161 161 161 1.07 1.20 21.57 29.93 6.987 2.600 38.760

45 66 65 65 65 156 156 154 1.40 1.70 20.06 29.93 6.987 2.600 38.760

46 66 65 66 65 153 142 150 1.74 2.00 18.38 29.93 6.987 2.600 38.760

47 67 66 66 66 142 119 140 2.04 2.40 15.81 29.93 6.987 2.600 38.760

51 69 68 69 68 232 231 232 0.23 0.30 27.11 29.94 6.987 2.600 38.760

52 69 68 68 68 212 212 212 0.64 0.70 26.76 29.94 6.987 2.600 38.760

53 69 69 69 69 203 203 203 1.04 1.20 25.88 29.94 6.987 2.600 38.760

54 69 69 69 69 196 196 196 1.42 1.70 24.35 29.94 6.987 2.600 38.760

55 70 69 69 69 189 189 188 1.85 2.20 22.26 29.94 6.987 2.600 38.760

56 71 70 70 70 187 184 182 2.20 2.60 20.46 29.94 6.987 2.600 38.760

57 71 70 70 70 169 153 168 2.56 3.00 16.52 29.94 6.987 2.600 38.760

61 70 70 69 69 269 269 269 0.41 0.50 31.12 29.94 6.987 2.600 38.760

62 71 70 70 70 253 253 253 0.86 1.00 30.85 29.94 6.987 2.600 38.760

63 71 71 71 70 243 243 243 1.31 1.50 30.00 29.94 6.987 2.600 38.760

64 72 71 71 71 236 236 237 1.68 2.00 28.56 29.94 6.987 2.600 38.760

65 73 72 73 72 230 231 231 2.18 2.60 26.30 29.94 6.987 2.600 38.760

66 74 73 73 72 224 225 223 2.54 2.90 24.22 29.94 6.987 2.600 38.760

67 75 74 74 73 202 190 201 2.89 3.50 17.44 29.94 6.987 2.600 38.760

71 70 69 69 69 303 303 303 0.98 1.10 36.19 29.98 6.987 2.600 38.760

72 71 70 70 69 290 290 290 1.40 1.70 35.62 29.98 6.987 2.600 38.760

73 72 70 70 70 281 281 282 1.84 2.20 34.32 29.98 6.987 2.600 38.760

74 73 72 72 71 276 276 277 2.20 2.60 32.90 29.98 6.987 2.600 38.760

75 73 72 72 71 271 271 272 2.56 3.00 31.12 29.98 6.987 2.600 38.760

76 74 72 72 71 261 263 262 2.99 3.50 27.39 29.98 6.987 2.600 38.760

77 75 73 73 72 244 232 243 3.28 3.85 18.56 29.98 6.987 2.600 38.760

16

B. Vellum Template

NOTES: PERFORMANCE OBTAINED AND CORRECTED IN ACCORDANCE WITH SAE J1723

hc= COMPRESSOR ISENTROPIC EFF.

Pi = COMPRESSOR INLET AIR
ABSOLUTE PRESSURE (kPa)

Po = COMPRESSOR DISCHARGE AIR
ABSOLUTE PRESSURE (kPa)

Ti = COMPRESSOR INLET AIR
ABSOLUTE TEMPERATURE (DEG.

KELVIN)
To = COMPRESSOR DISCHARGE AIR

ABSOLUTE TEMPERATURE (DEG.
KELVIN)

.286
Y = [(Po/Pi) -1]

hc= [(Ti) (Y) / (To-Ti)] X 100%

CORRECTED VOL. FLOW (CFM) =

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

VORTECH ENGINEERING, INC.
COMPRESSOR PERFORMANCE MAP
NOREPRODUCTIONS, ALL RIGHTS RESERVED

COMPRESSOR MAP
MODEL: N2Ki
TEST 1212A
DATE: 05/17/2010.
STD, PRESSURE=29.23 IN HgA
STD, TEMP.=537° RANKINE

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 5 10 15 20 25 30 35 40 45 50 55

Lb/Min.

LITER/Min. X

1000

CFM

P
R
E
S
S
U
R
E
 R

A
T
IO

P
2
c
/P
1
c

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.0

=
OBSERVED
AIR FLOW

X (99kPa)

BP
X

(Ti)

298.15 °K

CORRECTED VOL. FLOW
(LITERS/MIN X 1000)

OBSERVED
AIR FLOW

X

BP
X

537°R

(T1c)(29.23 IN HgA)

CORRECTED MASS FLOW = W Ti/537°R / (Pi/29.23)

17

C. Final Draft in Color

35k

30k

NOTES: PERFORMANCE OBTAINED AND CORRECTED IN ACCORDANCE WITH SAE J1723

hc= COMPRESSOR ISENTROPIC EFF.

Pi = COMPRESSOR INLET AIR
ABSOLUTE PRESSURE (kPa)

Po = COMPRESSOR DISCHARGE AIR
ABSOLUTE PRESSURE (kPa)

Ti = COMPRESSOR INLET AIR
ABSOLUTE TEMPERATURE (DEG.

KELVIN)
To = COMPRESSOR DISCHARGE AIR

ABSOLUTE TEMPERATURE (DEG.
KELVIN)

.286
Y = [(Po/Pi) -1]

hc= [(Ti) (Y) / (To-Ti)] X 100%

CORRECTED VOL. FLOW (CFM) =

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

P A X T O N A U T O M O T I V E C O R P .
C O M P R E S S O R P E R F O R M A N C E M A P
N O R E P R O D U C T I O N S , A L L R I G H T S R E S E R V E D

COMPRESSOR MAP
MODEL: N2500
TEST 1212D
DATE: 07/23/2010.
STD, PRESSURE=29.23 IN HgA
STD, TEMP.=537° RANKINE

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 5 10 15 20 25 30 35 40 45 50 55

Lb/Min.

LITER/Min. X

1000

CFM

25k

20k

P
R
E
S
S
U
R
E
 R
A
T
IO

P
2
c
/P
1
c

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.0

=
OBSERVED
AIR FLOW

X (99kPa)

BP
X

(Ti)

298.15 °K

CORRECTED VOL. FLOW
(LITERS/MIN X 1000)

OBSERVED
AIR FLOW

X

BP
X

537°R

(T1c)(29.23 IN HgA)

CORRECTED MASS FLOW = W Ti/537°R / (Pi/29.23)

68%
70%

65% 68%

40%

50%

59%

65%

71%

50k

45k

40k

18

D. MATLAB Code

% Compressor Performance Map Experimental Data Main Function-Calling Code
% Rev: B
% 12/26/2010
% Written By Jeff Freeman
% jeff.freeman01@gmail.com
%
% This program works in association with CPM_read_data.m, CPM_compute.m,
% and CPM.m to process compressor dyno test experimental data.
%
% In this code, the user can choose to either make a compressor map,
% calculate efficiency at one or manypoints, or both.
% To only make a map, let: plot_on = 1 and interp_on = 1.
% To only interpolate, let: plot_on = 0 and interp_on = 0.
% To make both, let: plot_on = 1 and interp_on = 1.
%
% fname is a string which defines the .txt file that contains the raw
% experimental data.
%
% smooth is a number sets the balance between smoothness and accuracy.
% Larger numbers are smoother and smaller numbers are more accurate.
%
% legstring is a cell of strings that define what speed each speed line
% represents.
%
% clabel_on defines whether or not the plot will have contour labels.
%
% XI is a two-column matrix of points to "read", where each row is a new
% point. The first column is mass flow rate, and the second column is
% pressure ratio.

clear
clc
close all

%% INSERT EXPERIMENTAL DATA

fname = ’1212D_Input.txt’;
r = CPM_read_data(fname);

%% Define Operating Parameters

smooth = 5; % See gridfit.m for details

% PLOTTING OPTIONS
plot_on = 1; % Do you want a plot (1) or not (0)?

legstring = {’20k’,’25k’,’30k’,’35k’,’40k’,’45k’,’50k’};
clabel_on = 1; % Do you want efficiency contour labels (1) or not (0)?

% INTERPOLATION OPTIONS
interp_on = 1; % Do you want to read the plot (1) or not (0)?

%XI = Data points (W,PR) at which to interpolate

19

wi = linspace(0,140,100);
pri = linspace(1,2.8,100);

[WI, PRI] = meshgrid(wi,pri);

XI(:,1) = WI(:)’;
XI(:,2) = PRI(:)’;

%% Calculate Performance Parameters from Experimental Data

for i = 1:length(r)
for j = 1:length(r(i).s)

[W(i,j), PR(i,j), eff(i,j)] = ...
CPM_compute(r(i).s(j));

end
end

%% Call the interpolating program and plot results if desired

[ZI] = CPM(W, PR, eff, smooth, ...
plot_on, legstring, clabel_on, ...
interp_on, XI, wi, pri);

function r = CPM_read_data(fname)
% read_data.m is used to read the input data files for the CPM Program.
%
% fname, is a .txt file that matches the following characteristics:
% -The first line is the test number
% -The second line is empty
% -The third column reads: r_s T_BM T_11 T_12 T_13
% T_21 T_22 T_23 P_BM P1 P2 P_baro D1 D2 A_BM
% -The 15 columns, labeled above, contain raw experimental data
% such that each row is a new speed, setting pair.
% -The numbers in r_s are two digit integers, where the first digit
% denotes the speed index and the second digit denotes the
% setting index.
%
% This function utilizes Gerald Recktenwald’s "readColData.m", which can be
% found at:
% http://web.cecs.pdx.edu/˜gerry/MATLAB/plotting/loadingPlotData.html
%
% Written by: Jeff Freeman

[labels,r_s,data] = readColData(fname,15,2);

for i = 1:length(r_s)
r_s_str(i,:) = int2str(r_s(i));

end

rlist = str2num(r_s_str(:,1));

20

slist = str2num(r_s_str(:,2));

for i = 1:length(rlist)
r(rlist(i)).s(slist(i)).T_BM = data(i,1);
r(rlist(i)).s(slist(i)).T_11 = data(i,2);
r(rlist(i)).s(slist(i)).T_12 = data(i,3);
r(rlist(i)).s(slist(i)).T_13 = data(i,4);
r(rlist(i)).s(slist(i)).T_21 = data(i,5);
r(rlist(i)).s(slist(i)).T_22 = data(i,6);
r(rlist(i)).s(slist(i)).T_23 = data(i,7);
r(rlist(i)).s(slist(i)).P_BM = data(i,8);
r(rlist(i)).s(slist(i)).P1 = data(i,9);
r(rlist(i)).s(slist(i)).P2 = data(i,10);
r(rlist(i)).s(slist(i)).P_baro = data(i,11);
r(rlist(i)).s(slist(i)).D1 = data(i,12);
r(rlist(i)).s(slist(i)).D2 = data(i,13);
r(rlist(i)).s(slist(i)).A_BM = data(i,14);

end

function [W, PR, eff] = CPM_compute(data)
% Compressor Performance Parameter Calculator
% Rev: A
% 12/23/2010
% Written by: Jeff Freeman
% jeff.freeman01@gmail.com
%
% This program calculates SAE Corrected Mass Flow Rate (W) [lbm/min],
% Pressure Ratio (PR) and Isentropic Efficiency (eff) [%] of a compressor
% from dyno test cell data. The calculations conform with SAE J1723. The
% data necessary for calculation includes one speed-setting pair as defined
% by CPM_read_data.m

%% Decompress data
T_BM = data.T_BM;% = Bell Mouth Temperature [F]
T_11 = data.T_11;% = Compressor Inlet Temperature #1 [F]
T_12 = data.T_12;% = Compressor Inlet Temperature #2 [F]
T_13 = data.T_13;% = Compressor Inlet Temperature #3 [F]
T_21 = data.T_21;% = Compressor Discharge Temperature #1 [F]
T_22 = data.T_22;% = Compressor Discharge Temperature #2 [F]
T_23 = data.T_23;% = Compressor Discharge Temperature #3 [F]
P_BM = data.P_BM;% = Bell Mouth Pressure [in. H2O (gauge)]
P1 = data.P1;% = Compressor Inlet Pressure [in. H2O (gauge)]
P2 = data.P2;% = Compressor Discharge Pressure [psia]
P_baro = data.P_baro;% = Barometric Pressure [in. Hg abs]
D1 = data.D1;% = Inner Diameter of Inlet Section [in]
D2 = data.D2;% = Inner Diameter of Discharge Section [in]
A_BM = data.A_BM;% = Calibrated Flow Nozzle (Bell Mouth) Area [inˆ2]

%% Calculate W (W_sae_corr)

T_1 = (T_11 + T_12 + T_13)/3 + 459.67; % Average Inlet Temp. [R]

P1_abs = P_baro - P1/13.608; % P1 [in. Hg abs] *note: recorded P1 is gauge

21

% Observed Mass Flow [lbm/min]
W_obs = 2.06 * A_BM * sqrt(P_baro*17.35*P_BM/(T_BM+459.67));

% Total Inlet Pressure [in. Hg abs]
Po1 = P1_abs * ((W_obsˆ2 * T_1) / (P1_absˆ2 * D1ˆ4 * 646) + 1);

W = W_obs * sqrt(T_1/537) * 29.236/Po1; % W_sae_corr
%W = W_obs * (T_BM+459.67)/536.67 * 29.238/P_baro; % W_sae_corr

%% Calculate PR (Pressure Ratio)

T_2 = (T_21 + T_22 + T_23)/3 + 459.67; % Average Discharge Temp. [R]

P2_Hg = P2 * 2.036; % Convert from psia to in. Hg abs

% Total Discharge Pressure [in. Hg abs]
Po2 = P2_Hg * ((W_obsˆ2 * T_2) / (P2_Hgˆ2 * D2ˆ4 * 646) + 1);

PR = Po2/Po1;

%% Calculate eff (Isentropic Efficiency)

% Observed volumetric flow rate inlet [ftˆ3/min]
Q1 = W_obs * 0.75354 * (T_BM+459.67) / P_baro;

% Total Inlet Temp. [R]
To1 = T_1 + (Q1/(pi * (D1/24)ˆ2))ˆ2 / 43258068;

% Discharge Density [lbm/ftˆ3]
rho2 = P2*144/(53.3*T_2);

% Discharge speed of sound [ft/s]
c2 = sqrt(1.4*1716.59*T_2);

% Discharge volumetric flow rate [ftˆ3/min]
Q2 = W_obs/rho2;

% Discharge velocity [ft/s]
v2 = Q2/(60 * pi * (D2/24)ˆ2);

% Discharge Mach number
M2 = v2/c2;

% Total Discharge Temp. [R]
To2 = T_2 * (1 + 0.2*M2ˆ2);
%To2 = T_2 + (Q2/(pi * (D2/24)ˆ2))ˆ2 / 43084924;

dT = To2 - To1; % Total Temp Differential [R]

eff = (To1 * PRˆ0.286 - To1) / dT * 100; % Isentropic Efficiency

end

22

function [ZI] = CPM(W, PR, eff, smooth, ...% Base Inputs
plot_on, legstring, clabel_on, ... % Plotting Inputs
interp_on, XI, wi, pri) % Interpolating (reading) Inputs

% Compressor Map Plotting
% Rev: B
% 12/26/2010
% Written By Jeff Freeman
% jeff.freeman01@gmail.com
%
% This code plots a compressor map according to SAE J1723 and reads the
% efficiency for any mass flow rate - pressure ratio pair.
%
% Inputs are (For more information, see CPM_Call.m):
% Base Inputs
% W == Corrected Mass Flow Rate
% PR == Pressure Ratio
% eff == Isentropic Efficiency
% smooth == Integer defining how much the program smooths data
%
% Plotting Inputs
% plot_on == Defines whether to plot (1) or not (0)
% legstring == Cell of strings defining the legend entries
% clabel_on == Defines whether to plot contour labels (1) or
% not (0)
%
% Interpolating (reading) Inputs
% XI == [n,2] array of [W,PR] points at which to
% interpolate data. If XI is built from a
% meshgrid of linspaces (or similar), include the
% original linspaces, wi and pri.
% wi == Array of Mass Flow Rates used to build XI(:,1)
% pri == Array of Mass Flow Rates used to build XI(:,2)
%
% The inputs W, PR, and eff need to be m x n matrices where m is the number
% of speed lines and n is the number of data points taken at each speed
% line. All speed lines must have the same number of data points associated
% with it. This version is compatible with up to 12 speed lines.
%
%
% To run this program, you need to have available the following codes
% written by John D’Errico:
% gridfit.m
% poly2tri.m
% insc.m
% simplicialcomplex.m
% buildbccdata.m
%
% See also: CPM_Call, CPM_read_data, CPM_compute, gridfit, poly2tri, insc

%% Parse inputs for bookkeeping

% Check to make sure we are doing something
if ˜interp_on && ˜plot_on

error ’Need to be either plotting, interpolating, or both.’
end

23

% Check for existence of necessary variables (W, PR, eff)
if exist(’W’,’var’) == 0 || ...

exist(’PR’,’var’) == 0 || exist(’eff’,’var’) == 0
error ’Not enough inputs are defined.’

end

% Define defaults of legstring and smooth if not provided
if exist(’legstring’,’var’) == 0

legstring = {’20k’,’25k’,’30k’,’35k’,’40k’,’45k’,’50k’};
end

if exist(’smooth’,’var’) == 0
smooth = 5;

end

% Determine number of speed lines
num = size(W); num = num(1);

% Check to see if default legstring is valid for size of input data
if length(legstring) ˜= num

error ’legstring size is not compatible with number of speed lines’
end

%% Find Surge and Choke Lines
% Surge Line
for i = 1:num

W_surge(i) = W(i,1);
PR_surge(i) = PR(i,1);

end

% Choke Line
for i = 1:num

W_choke(i) = W(i,end);
PR_choke(i) = PR(i,end);

end

%% Smooth the data for a pretty plot

% Reshape the data matrices into 1D vectors
W_vec = W(:);
PR_vec = PR(:);
eff_vec = eff(:);

% smoothing using gridfit. A bigger number will have a finer mesh.
Wnodes = 100;
PRnodes = 100;

[eff_grid, W_grid, PR_grid] = ...
gridfit(W_vec,PR_vec,eff_vec,Wnodes,PRnodes...
,’smoothness’,smooth);

% The last input for this function determines the ratio how "smooth" the

24

% map looks compared to how accurately it fits te data. Small numbers are
% very accurate while large numbers are very smooth.

% trace the external polygon (ccw direction)
x_edge = [W(1,:), W_choke, fliplr(W(end,:)), fliplr(W_surge)];
y_edge = [PR(1,:), PR_choke, fliplr(PR(end,:)), fliplr(PR_surge)];

% eliminate duplicate points at the corners
i = 1;
while i < length(x_edge)

i = i+1;
if x_edge(i) == x_edge(i-1)

x_edge(i) = [];
y_edge(i) = [];

end
end

% triangulate using poly2tri to build a simplicial complex for use as a
% boundary check
sc = poly2tri(x_edge,y_edge);

% If I am making multiple calls to insc, I want to pre-allocate bccdata.
sc.bccdata = buildbccdata(sc);

%% Perform Bilinear Interpolation
if interp_on

% User has input interpolation points and wants them to be output and
% plotted.
warnmark = 1;
for i = 1:size(XI,1)

% filter out parts of the grid that lie outside of the domain
if insc(sc,XI(i,:),0.001) ˜= 1

ZI(i,1) = NaN;
if warnmark

warning(’One or more desired interpolation points are outside of domain’)
warnmark = 0;

end
continue

end

% Run interp2
ZI(i,1) = interp2(W_grid,PR_grid,eff_grid,XI(i,1),XI(i,2));

end
else ZI = NaN;
end
% User just wants the basic compressor map.

%% Plot Compressor Map

25

if plot_on

% filter out parts of the grid that lie outside of the plotting domain
for i = 1:Wnodes

for j = 1:PRnodes
if insc(sc,[W_grid(i,j),PR_grid(i,j)],.001) ˜= 1

W_grid(i,j) = NaN;
PR_grid(i,j) = NaN;
eff_grid(i,j) = NaN;

end
end

end

%Define contour locations
E_max = floor(max(max(eff)));
E_min = floor(min(min(eff)));

% If E_min is very low, we want it to count in increments of 10 until
% we get close to E_max. Need to find the starting point.
E_min1 = E_min/10; % divide by 10 so we’re dealing with x.x
E_min2 = ceil(E_min1); % round up to nearest integer
E_min3 = E_min2*10; % *10 to get back up to percentage

V1 = [E_max, (E_max-1)]; % count by 1
V2 = E_max-3; % count by 2
V3 = E_max-6; % count by 3
V4 = E_max-12; % count by 6
V5 = fliplr((E_min3):10:(E_max-20)); % count by 10

if V4-max(V5) > 11
V4(2) = V4(1) - 6;

end

V = [V1, V2, V3, V4, V5];
V = fliplr(V);

% Initiate Plot
figure
hold on
xlabel(’Corrected Mass Flow Rate [lbm/min]’), ylabel(’Pressure Ratio’)
axis([0, 140, 1.0, 2.8])
grid on

% Define cycle of line properties
S = {’k-o’,’k-x’,’k-*’,’k-s’,’k-d’,’k-v’,’k-ˆ’,’k-p’,’k-h’...

,’k-<’,’k->’,’k-+’};

% Plot W vs. PR speed lines
for i = 1:num

plot(W(i,:),PR(i,:),S{i},’linewidth’,2.0);
end

% Plot Choke and Surge Lines
h = plot(W_surge,PR_surge,’k--’,W_choke,PR_choke,’k:’);

26

set(h,’LineWidth’,2.0)

% Plot and Label Efficiency Contours
[c,hc] = contour(W_grid,PR_grid,eff_grid,V);
set(hc,’linewidth’,2.0,’linecolor’,’k’)
colormap(’white’)
if clabel_on

clabel(c,hc,’background’,’white’,...
’fontweight’,’bold’,...
’fontsize’,8,...
’rotation’,0,...
’labelspacing’,300)

end

if interp_on && exist(’wi’,’var’) && exist(’pri’,’var’)
% Plot and Label Interpolated Efficiency Contours
j = 1;
for i = 1 : length(V)-1

vi(j) = V(i);
vi(j+1) = round((V(i+1)+V(i))/2);
j = j+2;

end

zi = reshape(ZI,length(wi),length(pri));
[csi,hi] = contour(wi,pri,zi,vi);
colormap(’jet’)
if clabel_on

clabel(csi,hi,...
’labelspacing’, 300)

end
end

% Compile Legend from legstring input
if interp_on

legstring1 = {legstring{:},’Surge’,’Choke’,’Isen. Efficiency’...
,’Interpolated Data’};

else
legstring1 = {legstring{:},’Surge’,’Choke’,’Isen. Efficiency’};

end

% Insert Legend
legend(legstring1...

,’location’,’BestOutside’);

hold off

end % This "end" ends the plotting sequence

function sc = poly2tri(x,y)
% poly2tri: converts a polygon in (x,y) into a triangulation (a
% simplicialcomplex)
% usage: sc = poly2tri(x,y)

27

%
% Note: uses ear clipping to triangulate the polygon. The
% polygon does not need to be convex, but it must be a
% simply connected polygon that does not cross itself.
%
% arguments: (input)
% x,y - vectors of points that define the polygon.
% x and y must be the same length vectors (either
% row or column vectors are allowed.)
%
%
% arguments: (output)
% sc - simplicial complex structure - as defined by the
% simplicialcomplex function.
%
%
% Example usage:
% An arbitrary (non-convex) polygon
%
% x = [0 1 1 .6 .2 .5 0 0];
% y = [0 0 1 .1 .5 .75 1 0];
% sc = poly2tri(x,y);
%
% Example usage:
% Triangulation from points on the perimeter of a circle
%
% theta = linspace(0,2*pi,20);
% x = cos(theta);
% y = sin(theta);
% sc = poly2tri(x,y);
%
%
% See also: simplicialcomplex, delaunays, alphashape
%
%
% Author: John D’Errico
% E-mail: woodchips@rochester.rr.com
% Release: 1.0
% Release date: 10/13/08

% make both x and y into column vectors
x=x(:);
y=y(:);

n = length(x);
if n˜=length(y)

error ’x and y must be vectors of the same length’
end

% combine x and y into a set of domain vertices
xy = [x,y];

% Was the last point wrapped around? If so, we
% can drop it. if not, then connect the two ends

28

% of the polygon.
if all(xy(1,:) == xy(end,:))

xy(end,:) = [];
n = n-1;

end

% we must have at least three points in the polygon
if n<=2

error ’Insufficient points to triangulate the polygon’
end

% list of edges of the polygon. There will be n edges.
edges = (1:n)’;
edges = [edges,edges+1];
% make that last edge wrap around
edges(end,2) = 1;

% Form a simplicial complex structure for eventual
% return. It will be a triangulation by the time we
% are done.
sc = simplicialcomplex(xy,edges);

% form triangles from each pair of consecutive edges
eartri = [edges,edges([(2:end),1],2)];

% compute the included angle between the pairs
% of edges of each triangle in this list
ang12 = atan2(xy(eartri(:,1),2) - xy(eartri(:,2),2), ...

xy(eartri(:,1),1) - xy(eartri(:,2),1));
ang23 = atan2(xy(eartri(:,3),2) - xy(eartri(:,2),2), ...

xy(eartri(:,3),1) - xy(eartri(:,2),1));
ang = ang12 - ang23;

% if an angle is negative, we may either be traversing
% the polygon in a clockwise direction, or this may be a
% convex polygon. We need to figure out what is happening.
m = (ang < 0);
ang(m) = ang(m) + 2*pi;

% was the curve traversed clockwise or counter-clockwise?
% If the sum of the angles is now (n+2)*pi, then we
% have traversed the polygon in a clockwise sequence.
totalangle = sum(ang);
if abs(totalangle - (n+2)*pi)<(1e4*eps)

% swap to a counterclockwise order
ang = 2*pi - ang;
eartri = eartri(:,[3 2 1]);
totalangle = sum(ang);

end

% The sum of angles must be (n-2)*pi
% the polygon was traversed in a counterclockwise sequence. If
% the sum was zero, then the polygon must cross itself.
if abs((totalangle) - pi*(n-2)) > (10000*eps)
% the polygon was not a proper one.

29

error ’Holy polygon, Batman! Its an improper one - does it cross itself?’
end

% It is time to start clipping the polygon into triangles

% preallocate the triangulation array as
% a list of triangles.
tri = nan(n-2,3);
nt = 0;
ne = size(eartri,1);
while ne>3

% pick that triangle with smallest (positive) included angle
apos = ang;
apos((ang<0)|(ang>pi)) = inf;
[apos,angtags] = sort(apos);

% will any of the other edges end up crossing the new
% edge if we clip off the first triangle in this list?
% If it does, then we need to pick a new triangle that
% does not make that happen. We can always find one.
% We do this by testing if any other vertex would have
% fallen inside the propective new triangle.
npos = sum(˜isinf(apos));
failflag = true;
for itri = 1:npos

% search through the prospective triangles, starting
% with the smallest included angle and working up.
potentialtriangle = eartri(angtags(itri),:);

allothervertices = setdiff(unique(eartri(:)),potentialtriangle(:));
P1 = xy(potentialtriangle(1),:);
M = [0 0 1;xy(potentialtriangle(2),:)-P1,1; ...

xy(potentialtriangle(3),:)-P1,1]’;
% compute barycentric coordinate for all of them
nothers = length(allothervertices);
bcc = M\[xy(allothervertices,:)-repmat(P1,nothers,1),ones(nothers,1)]’;
if all(any(bcc<0,1) | any(bcc>1,1))

% this triangle is acceptable
failflag = false;
break

end
end % for itri = 1:ntri
if failflag

% if we drop into here, then there was a problem with the polygon
error(’Failure in cleaving this polygon into triangles.’)

end

% clip off the chosen triangle, add it to tri
stri = potentialtriangle;
nt = nt+1;
tri(nt,:) = stri;

eartri(angtags(itri),:) = [];
ang(angtags(itri)) = [];

30

% modify the pair of triangles that shared
% an edge with the selected triangle.
k3 = find(eartri(:,3) == stri(2));
eartri(k3,3) = stri(3);
k1 = find(eartri(:,1) == stri(2));
eartri(k1,1) = stri(1);

% now update the included angles for triangles k1 and k3
k = [k1,k3];
ang12 = atan2(xy(eartri(k,1),2) - xy(eartri(k,2),2), ...

xy(eartri(k,1),1) - xy(eartri(k,2),1));
ang23 = atan2(xy(eartri(k,3),2) - xy(eartri(k,2),2), ...

xy(eartri(k,3),1) - xy(eartri(k,2),1));

angk = ang12 - ang23;
m = (angk < -pi);
angk(m) = angk(m) + 2*pi;
m = (angk > pi);
angk(m) = angk(m) - 2*pi;

ang(k) = angk;

ne = ne - 1;

end % while ne>3
tri(nt+1,:) = eartri(1,:);

% stuff the triangulation into sc.tessellation
sc.tessellation = tri;

function SC = simplicialcomplex(domainpoints,tessellation,range)
% simplicialcomplex: creator tool for simplicial complex struct
% usage: SC = simplicialcomplex(domainpoints,tessellation,range)
%
% arguments (input):
% domainpoints - (nxp) array of data points, each row is a "point"
% in a p-dimensional space
%
% tessellation - Array containing the tessellation
% (as returned by delaunayn or convhull)
% Each row defines a simplex in the tessellation, each
% element refers to one row of the array in domainpoints.
%
% A simplex need not be a full volume simplex. It
% may be a lower order simplex. Thus in p dimensions,
% a p-simplex with p+1 vertices will be a full volume
% simplex. More simply, in 3-d, a tetrahedron (4 vertices)
% is a 3-simplex. A 2-simplex is just a triangle. So the
% boundary surface of a tessellation is equally admissable
% in 3-dimensions it will be composed of triangles. This
% might then be referred to as a 2-manifold in the 3-d
% domain space.
%

31

%
% range - [OPTIONAL] (nxm) array of points in an m-dimensional
% space. Think of this as the image of the data in
% the array "points" through some mapping function
% into another space. range allows us to do interpolation,
% reverse interpolation (where appropriate), iso-surfaces,
% iso-slices, and many other useful things.
%
% If supplied, the range array must have the same number
% of rows as does the domainpoints array. They may have
% different numbers of columns, although then reverse
% interpolation will usually be impossible.
%
% arguments (output):
% SC - struct containing a simplicial complex
%
% SC will contain fields named:
% ’domain’, ’tessellation’, ’range’
%
% Also allowed are the (OPTIONAL) fields:
% ’description’, ’userdata’
% But these fields can only be set by assigning them, i.e.,
% SC.description = ’The quick brown fox’
% SC.userdata = ’10-22-06’
%
% See also: delaunays, tessellatehypercube, tessellatelattice, alphashape
%
% Author: John D’Errico
% e-mail: woodchips@rochester.rr.com
% Release: 1.0
% Release date: 10/22/06

% dimension of the space the data lives in?
[n,dim] = size(domainpoints);

if (nargin<2) || isempty(tessellation)
tessellation = zeros(0,0);

end
[nt,m] = size(tessellation);

% create a structure underlying the object
SC.domain = domainpoints;
SC.tessellation = tessellation;

% create other fields, leave empty
if (nargin<3)|isempty(range)

SC.range = zeros(n,0);
else

if (n˜=size(range,1))
error ’Domain and range points arrays must have the same number of rows’

end
SC.range = range;

end

32

function bccdata = buildbccdata(sc)
% buildbccdata: builds the information used by insc to compute barycentric coordinates
% usage: bccdata = buildbccdata(sc)
%
% When multiple successive calls will be made to insc or
% interpsc, use a prior call to buildbccdata to accelerate
% those calls. This is the only reason I’ve left this
% function accessible to the user. After you call the
% buildbccdata, you must NOT change the vertices or the
% tessellation in the complex, or the bccdata field will
% be incorrect.
%
% sc.bccdata = buildbccdata(sc);
%
% arguments: (input)
% sc - a simplicialcomplex struct, to be later used in either
% insc or interpsc. sc must not contain a manifold. sc
% must be a full volume complex.
%
% arguments: (output)
% bccdata - structure containing informayion used by insc

% unpack things
vert = sc.domain;
[nv,dim] = size(vert);
% a full volume simplex in n-d has one more
% vertex than the number of dimensions. Used
% a lot in this code.
dim1 = dim+1;

% mean subtract the vertices for an accuracy
% gain when the complex is far away from the
% origin.
bccdata.centerpoint = mean(vert,1);

% could use bsxfun here
vert = vert - repmat(bccdata.centerpoint,nv,1);

tess = sc.tessellation;
[nt,cols]=size(tess);
if cols˜=dim1

error(’This is a manifold complex’)
end

% What version is this? I need to know if we need to
% set some spparms options to get around a solver
% problem.
matlabversion = ver(’matlab’);
matlabversion = str2double(matlabversion.Version);
if matlabversion >= 7

% at least release 7
% store the spparms settings to restore
% them when we are done
sppold = spparms;
spparms(’umfpack’,0)

33

spparms(’bandden’,1)
end

% block the problem?
blocksize = min(512,nt);
nL = blocksize;
L = 1:nL;
offset = 0;
bccdata.mat = NaN(dim1,nt*dim1);
failedlist = false(1,nt);
while ˜isempty(L)

% work on a subset of the full problem
tessL = tess(L,:);

% stuff into bccdata
bcc = bccblock(tessL)’;
m = offset + (1:(length(L)*dim1*dim1));
bccdata.mat(m) = bcc(:);
% maintain a list of any failures
if isinf(bcc(1))

failedlist(L) = true;
end

% grab the next block
offset = dim1*dim1*L(end);
L = L + blocksize;
L(L>nt) = [];

end

% did any of the sparse block inverses fail?
% If any did fail, then redo those blocks, one
% piece at a time. A singular matrix will not be
% a problem in itself, since then NO points will
% ever be found by insc that lie inside that
% simplex. The simplex must have been degenerate.
% This is acceptable, since even if a point is
% "inside" a degenerate simplex, it will also be
% on an edge of another simplex too, and thus
% inside that simplex.
k = find(failedlist);
if ˜isempty(k)

for L = k
tessL = tess(L,:);
m = dim1*(L-1) + (1:dim1);

% stuff into bccdata. Some of these will
% produce garbage, since the previous inv
% failed on the enclosing block. It is ok
% though, as argued above.
bccdata.mat(m,:) = bccblock(tessL);

end
end

% we generated the transpose of the .mat field,
% so do the swap now.

34

bccdata.mat = bccdata.mat’;

% restore spparms if we changed it
if matlabversion >= 7

spparms(sppold)
end

% all done.

% ==
% nested function - bccblock
% ==

function bccmat = bccblock(subtess)
nst = size(subtess,1);
if nst > 1

% sparse block inverses
N = dim1*nst;
m = vert(subtess’,:);
m = [m,ones(N,1)];

% populate the sparse block diagonal matrix
% directly. This should be faster than a
% mat2cell followed by a call to blkdiag.
rowindex = repmat((1:N)’,1,dim1);
columnindex = repmat(1:N,dim1,1);
columnindex = reshape(columnindex,[dim1 dim1,nst]);
columnindex = reshape(permute(columnindex,[2 1 3]),dim1,N)’;

% sparse inverse
minv = inv(sparse(rowindex,columnindex,m,N,N));

% recover the blocks as a flat array
bccmat = minv(sub2ind([N,N],columnindex,rowindex));
bccmat = reshape(full(bccmat),N,dim1);

else
% its a single simplex. don’t do it in
% sparse block diagonal form, as that
% would be less efficient.
bccmat = inv([vert(subtess,:)’;ones(1,dim1)]);

end % if nst > 1
end % nested function end

end % mainline end

function sc = poly2tri(x,y)
% poly2tri: converts a polygon in (x,y) into a triangulation (a
% simplicialcomplex)
% usage: sc = poly2tri(x,y)
%
% Note: uses ear clipping to triangulate the polygon. The
% polygon does not need to be convex, but it must be a
% simply connected polygon that does not cross itself.
%
% arguments: (input)

35

% x,y - vectors of points that define the polygon.
% x and y must be the same length vectors (either
% row or column vectors are allowed.)
%
%
% arguments: (output)
% sc - simplicial complex structure - as defined by the
% simplicialcomplex function.
%
%
% Example usage:
% An arbitrary (non-convex) polygon
%
% x = [0 1 1 .6 .2 .5 0 0];
% y = [0 0 1 .1 .5 .75 1 0];
% sc = poly2tri(x,y);
%
% Example usage:
% Triangulation from points on the perimeter of a circle
%
% theta = linspace(0,2*pi,20);
% x = cos(theta);
% y = sin(theta);
% sc = poly2tri(x,y);
%
%
% See also: simplicialcomplex, delaunays, alphashape
%
%
% Author: John D’Errico
% E-mail: woodchips@rochester.rr.com
% Release: 1.0
% Release date: 10/13/08

% make both x and y into column vectors
x=x(:);
y=y(:);

n = length(x);
if n˜=length(y)

error ’x and y must be vectors of the same length’
end

% combine x and y into a set of domain vertices
xy = [x,y];

% Was the last point wrapped around? If so, we
% can drop it. if not, then connect the two ends
% of the polygon.
if all(xy(1,:) == xy(end,:))

xy(end,:) = [];
n = n-1;

end

36

% we must have at least three points in the polygon
if n<=2

error ’Insufficient points to triangulate the polygon’
end

% list of edges of the polygon. There will be n edges.
edges = (1:n)’;
edges = [edges,edges+1];
% make that last edge wrap around
edges(end,2) = 1;

% Form a simplicial complex structure for eventual
% return. It will be a triangulation by the time we
% are done.
sc = simplicialcomplex(xy,edges);

% form triangles from each pair of consecutive edges
eartri = [edges,edges([(2:end),1],2)];

% compute the included angle between the pairs
% of edges of each triangle in this list
ang12 = atan2(xy(eartri(:,1),2) - xy(eartri(:,2),2), ...

xy(eartri(:,1),1) - xy(eartri(:,2),1));
ang23 = atan2(xy(eartri(:,3),2) - xy(eartri(:,2),2), ...

xy(eartri(:,3),1) - xy(eartri(:,2),1));
ang = ang12 - ang23;

% if an angle is negative, we may either be traversing
% the polygon in a clockwise direction, or this may be a
% convex polygon. We need to figure out what is happening.
m = (ang < 0);
ang(m) = ang(m) + 2*pi;

% was the curve traversed clockwise or counter-clockwise?
% If the sum of the angles is now (n+2)*pi, then we
% have traversed the polygon in a clockwise sequence.
totalangle = sum(ang);
if abs(totalangle - (n+2)*pi)<(1e4*eps)

% swap to a counterclockwise order
ang = 2*pi - ang;
eartri = eartri(:,[3 2 1]);
totalangle = sum(ang);

end

% The sum of angles must be (n-2)*pi
% the polygon was traversed in a counterclockwise sequence. If
% the sum was zero, then the polygon must cross itself.
if abs((totalangle) - pi*(n-2)) > (10000*eps)
% the polygon was not a proper one.
error ’Holy polygon, Batman! Its an improper one - does it cross itself?’

end

% It is time to start clipping the polygon into triangles

% preallocate the triangulation array as

37

% a list of triangles.
tri = nan(n-2,3);
nt = 0;
ne = size(eartri,1);
while ne>3

% pick that triangle with smallest (positive) included angle
apos = ang;
apos((ang<0)|(ang>pi)) = inf;
[apos,angtags] = sort(apos);

% will any of the other edges end up crossing the new
% edge if we clip off the first triangle in this list?
% If it does, then we need to pick a new triangle that
% does not make that happen. We can always find one.
% We do this by testing if any other vertex would have
% fallen inside the propective new triangle.
npos = sum(˜isinf(apos));
failflag = true;
for itri = 1:npos

% search through the prospective triangles, starting
% with the smallest included angle and working up.
potentialtriangle = eartri(angtags(itri),:);

allothervertices = setdiff(unique(eartri(:)),potentialtriangle(:));
P1 = xy(potentialtriangle(1),:);
M = [0 0 1;xy(potentialtriangle(2),:)-P1,1; ...

xy(potentialtriangle(3),:)-P1,1]’;
% compute barycentric coordinate for all of them
nothers = length(allothervertices);
bcc = M\[xy(allothervertices,:)-repmat(P1,nothers,1),ones(nothers,1)]’;
if all(any(bcc<0,1) | any(bcc>1,1))

% this triangle is acceptable
failflag = false;
break

end
end % for itri = 1:ntri
if failflag

% if we drop into here, then there was a problem with the polygon
error(’Failure in cleaving this polygon into triangles.’)

end

% clip off the chosen triangle, add it to tri
stri = potentialtriangle;
nt = nt+1;
tri(nt,:) = stri;

eartri(angtags(itri),:) = [];
ang(angtags(itri)) = [];

% modify the pair of triangles that shared
% an edge with the selected triangle.
k3 = find(eartri(:,3) == stri(2));
eartri(k3,3) = stri(3);
k1 = find(eartri(:,1) == stri(2));
eartri(k1,1) = stri(1);

38

% now update the included angles for triangles k1 and k3
k = [k1,k3];
ang12 = atan2(xy(eartri(k,1),2) - xy(eartri(k,2),2), ...

xy(eartri(k,1),1) - xy(eartri(k,2),1));
ang23 = atan2(xy(eartri(k,3),2) - xy(eartri(k,2),2), ...

xy(eartri(k,3),1) - xy(eartri(k,2),1));

angk = ang12 - ang23;
m = (angk < -pi);
angk(m) = angk(m) + 2*pi;
m = (angk > pi);
angk(m) = angk(m) - 2*pi;

ang(k) = angk;

ne = ne - 1;

end % while ne>3
tri(nt+1,:) = eartri(1,:);

% stuff the triangulation into sc.tessellation
sc.tessellation = tri;

39

