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Propeller Theory and Design

Combined Momentum and Blade Element Theory
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Extensions of Blade Element and Momentum Theories

Extension of BET
The drag of a propeller core may be written as: 

D1 = ½ ρV1
2 A1CD1

Where A1 is the frontal area of the propeller core.& C D1 is the 
drag of the core., CD1 ≈≈≈≈ 1  . This drag is often small compared 
to the thrust produced and hence is neglected. In case of small 
propellers or micro-propellers this term may be significant.∫
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propellers or micro-propellers this term may be significant.
Thus the thrust coefficient becomes :

CT = ½ ṁ.  [J2 + (2.ππππ.r/d)2 ] (CLcos φφφφ - CD sin φφφφ ).c/d. d(r/d)
– ½ J2.A1/d2

where, C D1 = 1 assumed.

It is seen that C T depends largely on C L --- as CD is small 
and sin α is also small

∫

∫
2
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Propeller torque, Q =      ṁ.∫∫∫∫ r. dFt,  and 

power, P = ωωωω.Q = 2.ππππ.n. ∫∫∫∫ r. dFt

Propeller Power,        d/2

P = 2.ππππ.n.½ ρρρρ.n2d2m.∫∫∫∫ [J2 +(2.ππππ.r/d)2](CLsin φφφφ + CDcos φφφφ ).
0 .r.c.dr
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In the core region between r = 0  to r = r 1 may be 
neglected for all practical purposes.    Hence,

½

CP = .∫∫∫∫ [J2 + (2.ππππ.r/d)2 ] (CL sin φφφφ + CD cos φφφφ ). r/d. 
r1/d c/d. d(r/d)

Thus C P is a function of  J , advance ratio for a given 
propeller shape i.e. C L and CD



The above equations for thrust and power coefficien ts 
may be replaced by  replacing the factor 

[J2 + (2.ππππ.r/d)2 ] = J2 (1 + cot 2 φφφφ) = J2 / sin 2φφφφ

d/2

CT = J2/2d2 . { m ∫∫∫∫ [ (CL cot φφφφ - CD) /sin φφφφ ] c. dr – A1 }
r1
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1

d/2
CP = ππππ m . J2/d2 ∫∫∫∫ [(CL + CD. cot φφφφ) sin θθθθ]. c. r. dr

r1

Now, the gliding angle εεεε is defined as tan εεεε = CD / CL
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The efficiency of the blade element may also be wri tten 
down as         

ηηηηel = tan α / tan (α + εεεε)

The maximum efficiency may be given as
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The last two expressions are valid for small εεεε only



The efficiency plot shown above shows for  εεεε = 0 we get, ηηηηel
= 1 independent of β. It can be proved that, as visible from 
the plot that the curves are symmetrical with respe ct to the 
line,  β = ππππ/4 - εεεε/2 . 

For β = 0 and β = ππππ/2 - εεεε we have ηηηηel = 0 

ηηηη prop = [ ∫∫∫∫ ηηηηel. dP ] /  ∫∫∫∫dP
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The propeller efficiency would assume a value of 1 for εεεε = 0 
which means drag coeff. is 0. The maximum elemental  
efficiency that the blade can assume is (1- 2. εεεεmin )   where 
εεεεmin denotes the minimum εεεε occurring on the blade. Since 
this maximum elemental efficiency can occur only at  one 
blade efficiency the overall propeller efficiency w ill always 
be less than the maximum elemental efficiency as lo ng as 
all dP are positive . For any εεεε < εεεεmax the ηηηηel lies above the 
efficiency curve of  εεεεmax .



Extension of Momentum Theory

If one applies change of velocity 
component in all three 
directions i.e. changes are 
designated v 1 , w1 , u1 - as the 
three components after the 
actuator disc. The energy 
equation can now be derived as 
upstream of the actuator disc :
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upstream of the actuator disc :

ρρρρ/2. v2 + pαααα = ρρρρ/2.[ (V+v) 2 + w2 ]+ p1 ------------- upstream equation

ρρρρ/2. [(V + v) 2 +  w2 + u2 ] + p2 = ρρρρ/2. [ (V1
2 + v1

2) + w1
2 + 

u1
2 ] + pe

------- Downstream

Where one may write p2 = p1 + p’ over the disk cross section



The velocity components v, w, u are small and their  second order 
terms and the differences of the second order terms  are negligible 
compared to those of the main velocity components. 

Now, if energy equation is applied between the stat ions αααα-αααα to 1-1 
upstream of the actuator disc, we get :

1 0
2 2 2 2 2 2 2

1 1 01 1 1 1 1 1 1p - p(V + v )+ w + u V v (2V + v ) + w + vp - p
+ - = +

γ 2g 2g γ 2g
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In the above equation w1
2 is of the fourth order and u 1

2 ≈≈≈≈ u2

and their difference is of the third order. The basic
equations of the Momentum theory established earlier are
not sufficient or intended to determine the unknown
functions v, v 1, u at the radius r. To determine these
unknowns it would be necessary to set up the differential
equations governing the motion of the fluid and to solve
them on the basis of a given propeller shape.



The simplest set of  plausible assumptions is the f ollowing : (1) The 
axial velocity components v and v 1 are assumed to be constant over 
the entire cross sections. (2) The tangential veloc ity components  u of 
the immediate downstream of the actuator disk are a ssumed to be 
proportional to the distance r from the propeller a xis u = r. ω′ω′ω′ω′ . The 
assumptions leads to v, v 1 and u/r by certain average values. The first 
assumption leads to v= ½v 1 by virtue of earlier theory. Note that v 1 and 
ω′ω′ω′ω′ are the axial and tangential values imparted by the  actuator disc on 
the fluid.
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Accordingly we can write :



Thus, thrust as per momentum theory may be written as :

And, power put in by the actuator disk  is :
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Or,



Thus the (induced ) efficiency of a propeller as AD T is
:

Or, 
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A set of new Thrust Loading and Power Loading are d efined as :
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Exit induced velocity v may be found from :



The induced whirl speed ωωωω’   may be found from :

A unique relationship between the thrust, and torqu e loading and 
efficiency can now be written down as :
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As a first approximation the relation between ττττ and η η η η may be 
written as :



Combined         
Blade Element and 
Momentum Theory
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In this theory, the induced flow due to lift produc tion on a blade is 
actually computed. For this purpose, it is noted th at in a momentum 
theory, thrust can be expressed in terms of induced  velocity. If the 
number of blades is B, the total elemental thrust f rom simple blade 
element theory (omitting  term) is:

0 0
2

l R

1
B.dT = B.c.L.cos B.C . ρ.V c.dr.cos 

2
φ φ=

where  φφφφ0000 is defined in fig.. Note that the induced velocity in the 
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where  φφφφ0000 is defined in fig.. Note that the induced velocity in the 
thrust direction is

Therefore, by momentum theory, the total elemental thrust is also 
given by 

0iv .cosφφφφ

i 0 i 0B.dT = ρ.(2.π.r.dr).(V + v cos ).(2v cos )φ φ



2
l R

i
r i 0

B.C .c.V
v =

8.π.r V + v cos ( )φφφφ

Equating the two equations we find that:

To simplify it is assumed that the angle  ααααιιιι is very small. 

Hence:
i i .sin = sin( + α ) sin + α cosφ φ φ φφ φ φ φφ φ φ φφ φ φ φ����≈
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i i .0sin = sin( + α ) sin + α cosφ φ φ φφ φ φ φφ φ φ φφ φ φ φ����

r i 0

R

V + v  cos
=

V

φφφφ

i i Rtanα = v / V α� i il 0C = a (β - - α )φφφφUsing and

i

i.  

or 0

R i i

a (β - - α )V B.c
= α .

V 8πr sin + α cos
ιιιιαααα

α αα αα αα α
≅We get,

≈

≈



Define the solidity ratio,  as the ratio of total b laded area to the 
disk (swept) area:

2

B.c.R B.c
σ = =

πR πR

r
x =

R
and

2 0 0
i i i i

a .σ a σ
α cos + (sin + ).α - (β - ) = 0

8x 8x
φ α αφ α αφ α αφ α α

A quadratic equation is arrived at for ααααi
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20 0 0
i i i i i

a σ a σ a σ1
α = -(sin + )+ (sin + ) + 4cos (β - )

2cosθ 8x 8x 8x
α α α α

  
 
  

The solution of which is:



If the following approximations are used :

icos 1.0αααα ≈ ι r tsin = V / V .xαααα r tV V .x≈

where V t is the tangential velocity at the tip and x = r/R

the induced velocity i.i tv = α V .x can be found from the eqn.s 
:

0 0 0
ii t

2a σ a σ a σV V
v = V - ( + )+ ( + ) + (β - )αααα

  
 
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ii t
t t

v = V - ( + )+ ( + ) + (β - )
2V 16 2V 16 8.x

αααα 
  

It is used frequently to evaluate the induced veloci ty on helicopter 
rotors in  vertical climbing flight.

i
i

i

0

β -
α

8.x.sin 
1+

a σ

αααα
αααα

≅Under low thrust conditions , 

Simplifying for αi

8. .sin
1

.

i x

a

β φ
α

φ
σ

−
=

+



2T
T

dC
= 3.88x .σ.ψ

dx

Q 3
Q

dC
= 1.94x .σ.ψ

dx

The thrust and the torque gradients are finally giv en as : (ref : Revised 
BET) 
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Where,

φ0 = φ + αi
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End of  Propeller Chapter
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