
Free Shear Flows 1

Turbulent free shear flows are the simplest examples of inhomogeneous turbulent flows. Free

shear flows can be defined as flows that evolve away from a boundary, and typically consists

of a mean velocity profile evolving along the axial direction (e.g. a spreading jet). These

flows typically display self-similarity, due to the absence of any imposed external length scale

(e.g. from confinement effects). Self-similarity essentially means that the cross sectional mean

velocity profile has the same shape, regardless of the axial location. At any axial location in

a free shear flow, x, we can define 3 different quantities or ”scales”: Centerline velocity Uc(x),

shear velocity Us, and width δ(x). Also, there is an ambient velocity U∞. Some examples of

free shear flows are (Fig. 1):

1. Wakes: In this case, U∞ > 0, Us(x) = U∞ − Uc(x), and we will see that δ(x) ∝ x1/2 if

Us � Uc

2. Jets: For co-flowing jets, U∞ > 0, while for jets in a quiescent environment, U∞ = 0.

Again, Us(x) = Uc(x) − U∞. For jets in quiscent environment, Us = Uc. For this case,

we will see that δ(x) ∝ x

3. Mixing layer: Here, there is no unique U∞; instead we have velocity going to U1 and U2

on both sides on the mixing layer. Us(x) = U2 − U1 is a constant, and Uc = U1+U2
2 , and

r = Us/Uc. We will require Us � Uc (or r � 1) to obtain a self-similar solution here, for

which we can obtain δ(x) ∝ x.
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Figure 1: (a) Mixing layer (b) Jet (c) Wakes. Notation of quantities in figure is different from

the text.
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The ”width” of a wake has to be defined consistently before beginning the analysis. In a

jet, we can, for instance, define it as the y location where U(x, y)|y=δ(x) = 1
2Uc(x). There are

many other ways to define the meaning of width δ(x), but, once we choose a definition, our

analysis has to be consistent with it.

In our quest for a self-similar solution, we will start off with the equations for mean velocity,

U(x, y) and V (x, y):

∂U

∂x
+
∂V

∂y
= 0 (1)

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+ ν

[
∂2U

∂x2
+
∂2U

∂y2

]
− ∂u2

∂x
− ∂uv

∂y
(2)

U
∂V

∂x
+ V

∂V

∂y
= −∂P

∂y
+ ν

[
∂2V

∂x2
+
∂2V

∂y2

]
− ∂uv

∂x
− ∂v2

∂y
(3)

We now try and simplify the equations by performing ”scaling analysis”, in which we will

first make assumptions about the relative size of scales, and then try to see which terms can, as

a result, be neglected. The scales already mentioned are Uc, δ, Us. One more important scale

is L ∼ ∂U/∂x
∂2U/∂x2

, which gives an idea of the length scale over which the axial velocity is changing.

Another scale is q, which is the size (e.g. standard deviation) of the turbulent fluctuations,

u, v. To start with, it is easy to see that, at any x location:

U ∼ Uc (4)

∂U

∂y
∼ Us

δ
(5)

However, the scale for V has to be obtained from the continuity equation:

∂U
∂x+ ∂V

∂y = 0[
Us
L

] [
V
δ

] (6)

Implying that

V ∼ Us
δ

L
(7)

Next, to understand the scaling of pressure, we look at the V momentum equation (scalings

multiplied by δ):

U ∂V
∂x + V ∂V

∂y + ∂uv
∂x + ∂v2

∂y = −∂P
∂y +ν

[
∂2V
∂x2

+ ∂V
∂y2

][
UcUs

δ2

L2

] [
U2
s
δ2

L2

] [
q2 δL

] [
q2
]

[??]
[
ν Us
L
δ2

L2

] [
ν Us
L

] (8)
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For Re =→∞ and δ/L→ 0, balance is possible only if:

−∂P
∂y

=
∂v2

∂y
(9)

The boundary conditions vv(x,±∞) = P (x,±∞) = 0 implies (along with eqn (9)) that

v2 = −P for the whole flow. Hence,

∂P

∂x
= −∂v

2

∂x
(10)

Substituting eqn (10) into eqn (2), we get the U momentum equation without P :

U ∂U
∂x+ V ∂U

∂y + ∂u2−v2
∂x + ∂uv

∂y = ν
[
∂2U
∂x2

+ ∂U
∂y2

]
[
UcUs
L

] [
Usδ
L

Us
δ

] [
q2

L

] [
q2

δ

] [
νUs
L2

] [
νUs
δ2

] (11)

After considering the limit δ/L → 0, Reδ → ∞, we get (after multiplying the scaling by
δ
U2
s

):

U ∂U
∂x+ V ∂U

∂y + ∂uv
∂y = 0[

Ucδ
UsL

] [
δ
L

] [
q2

U2
s

] (12)

There are now 2 cases we consider:

Case 1 Uc � Us: This can occur in the far field of a wake or co-flowing jet (i.e. |Ucl − U∞| �
U∞), or in a mixing layer with r � 1. In this case, clearly, the first term on the LHS will

dominate over the 2nd term on the LHS, and will balance the Reynolds stress term (3rd term

on LHS). Therefore, for this case, we can simplify the equation to:

U
∂U

∂x
+
∂uv

∂y
= 0 (13)

In these type of flows, we can typically express the velocity in the form U(x, y) = U0 +

Us(x, y), where |U0| � |Us|, and U0 is a constant. Therefore, the above equation can be

approximated to:

U0
∂Us
∂x

+
∂uv

∂y
= 0 (14)

The above equation gives the local momentum conservation equation at a (x, y) location.

We can also write a global momentum conservation equation by integrating from −∞ to ∞
over y, to obtain:
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U0
d

dx

∫ ∞
−∞

[U − U0]dy = 0 (15)

or,

M =

∫ ∞
−∞

U0[U − U0]dy = Constant (16)

where M is the net momentum flux per unit mass at any x location, and it has great physical

significance. For instance, we can prove that, for a wake, if x is located in the far field, then

U0 = U∞ and:

ρ

∫ ∞
−∞

U∞[U − U∞]dy = −D (17)

where D is the drag of the bluff body around which the wake is being formed. The constraint

given by eqn (17) will be useful for us when we are trying to derive a self-similar form of the

velocity profile. Note that since U0 is a constant, therefore it means that the net mass flux∫∞
−∞[U − U0]dy is also a constant at any x location.

Case 2 Uc ∼ Us: This can occur for jets with no co-flow, near field of wakes and for mixing layers

with r ∼ 1. This case, the Reynolds stress term again has to balance the convective terms.

Therefore, the only scaling possible is q2/U2
s ∼ δ/L, and the equation cannot be simplified

further, leading to the same momentum equation:

∫ ∞
−∞

[
U
∂U

∂x
+ V

∂U

∂y

]
dy = 0 (18)

Integrating the above equation in its conservative form, we obtain the global momentum equa-

tion:

d

dx

∫ ∞
−∞

U2dy = −V U
∣∣y=∞
y=−∞ (19)

For a jet, U(x,±∞) = 0, and therefore we can simply write:

∫ ∞
−∞

U2dy = constant = U2
in∆ (20)

where Uin is the velocity at the inlet and ∆ is the width of the inlet. For a wake, we know that

U(x,±∞) = U∞. Therefore, using the integral form of the continuity equation:
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d

dx

∫ ∞
−∞

Udy = −V
∣∣∞
−∞ (21)

we can simplify eqn (19) to:

∫ ∞
−∞

U(U − U∞)dy = constant (22)

The above equation is in fact a more exact version of eqn (16), since we are not assuming

Us � Uc here. However, it is actually not possible to find a similarity form for the wake in the

near field.

1 Similarity Analysis For the Wake

Here, we will try to obtain a similarity solution for a wake velocity profile in the far field, where

we know that Us � Uc applies (case 1). Thus, we can approximate the wake velocity field as:

U(x, y) = U∞ − û(x, y) (23)

Clearly, û ∼ Us, and therefore |û| � U∞. So, eqn (14) can be rewritten as:

U∞
∂û

∂x
=

∂R12

∂y
(24)

Here, we have switched to the notation uv = R12 for convenience. The boundary conditions

for û are:

û(x,±∞) = 0 (25)

∂û

∂y

∣∣
y=0

= 0 (26)

The global momentum flux constraint (eqn (17)) can now be re-written as:

∫ ∞
0

ρU∞ûdy =
1

2
D (27)

The mixing length model will be used to obtain closure for R12:

R12 = −l2mix
∣∣∣∣∂U∂y

∣∣∣∣ ∂U∂y = l2mix

∣∣∣∣∂û∂y
∣∣∣∣ ∂û∂y (28)

where lmix = αδ (29)
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where α is a constant. This choice of lmix is motivated by the fact that the largest eddies in

the flow, at any x location, should be proportional to δ(x). The value of α can however vary

between different types of flows, and is essentially decided by experiments.

Eqn (24) can be re-written, using eqn (28), as:

U∞
∂û

∂x
= α2 ∂

∂y

[
δ2
∣∣∣∣∂û∂y

∣∣∣∣ ∂û∂y
]

(30)

Now we are ready to find the self-similar solution for velocity. Self-similarity can actually

be justified using dimensional analysis. To start with, we can write down a general expression

for û(x, y):

û = G(x, y, Uc(x), Us(x), δ(x), L(x), ν) (31)

Now, since there are only 2 dimensions (L, T ) and 8 parameters, therefore, we should be able

to reduce the above relation to 6 non-dimensional quantities:

û(x, y) = Us(x)G∗(x/δ, y/δ, Uc/Us, δ/L, δUs/ν) (32)

In the limit of Uc/Us → 0, δUs/ν →∞, δ/L→ 0 and δ/x→ 0, we hope that G∗ depends only

on y/δ 2. Thus, we can write the ”self-similar” form:

û(x, y) = u0(x)F (η) (33)

where u0(x) is some function of x, and η = y/δ(x). We would now like to know the form of

u0(x) and F (η). Towards that goal, we will substitute eqn (33) into eqns (24) and (27). Chain

rule gives us the following rules for transforming between variables:

∂

∂x

∣∣∣∣
y

=
∂

∂x

∣∣∣∣
η

+
∂η

∂x

∂

∂η

∣∣∣∣
x

(34)

∂

∂y

∣∣∣∣
x

=
∂η

∂y

∣∣∣∣
x

∂

∂η

∣∣∣∣
x

(35)

where we can derive:

∂η

∂x

∣∣∣∣
y

= −δ
′

δ
η (36)

∂η

∂y

∣∣∣∣
x

=
1

δ
(37)

Thus:

∂û

∂x

∣∣∣∣
y

= F (η)u′0(x)− u0(x)F ′(η)
δ′(x)

δ(x)
(38)

∂û

∂y

∣∣∣∣
x

=
u0(x)

δ(x)
F ′(η) (39)

2This is actually a very strong assumption. For instance, if G∗ ∝ (δ/L), then G∗ → 0 for δ/L→ 0.
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The local and global momentum balance equations (eqns (30),(27)) can now be written as:[
δU∞u

′
0

u20

]
F (η)−

[
U∞δ

′

u0

]
ηF ′(η) = α2 d

dη

[
|F ′(η)|F ′(η)

]
(40)

[ρU∞δu0]

∫ ∞
0

F (η)dη =
D

2
(41)

The above equations can be consistent only if the terms in the square brackets do not depend

on x. Thus, we impose the constraints:

δU∞u
′
0

u20
= a1 (42)

U∞δ
′

u0
= a2 (43)

D

2ρU∞u0δ
= 1 (44)∫ ∞

0
F (η)dη = 1 (45)

The last constraint (eqn (45)) is kept to avoid an additional undetermined constant in eqn

(44). Imposing this constraint does not have any other consequence, since any resulting factor

is absobed into u0. Now we can also easily show that the constraints in eqn (42)-43 are

equivalent, since, from eqn (44), u0δ is a constant and therefore u0δ
′ = −δu′0. As a result,

a1 = −a2. So in fact, we just need to satisfy eqns (43)–(44). Dividing eqn (43) by eqn (44), we

obtain:

2U2
∞ρδ

′δ

D
= a2 (46)

⇒ δ(x) =

√
Da2(x− x0)

U2
∞ρ

(47)

Where x0 is a constant denoting the ”virtual origin” of the wake. Using eqn (47) and eqn (44),

we can also say:

u0(x) =
1

2

√
D

a2ρ(x− x0)
(48)

Effectively, we have been able to show that u0 ∝ (x− x0)−1/2 and δ ∝
√
x− x0. We substitute

the above expressions for u0 and δ into eqn (40), and obtain the following ODE:

a2(F + F ′η)− α2 d

dη
[F ′]2 = 0 (49)

Here, we have used the simplification that, F ′(η) ≤ 0 for η > 0 (this is consistent with the

final expression for F (η) below). Moreover, based on the boundary conditions for û in eqns
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(25)–(26), we can obtain:

F ′(0) = 0 F (∞) = 0 (50)

Using the equation for F (η), along with the boundary conditions above, we can obtain the

solution:

F (η) =

 C2

[
1−

(
η
ηe

)3/2]2
for η < ηe

0 for η > ηe

(51)

where ηe =
(
3αC√
a2

)2/3
. We now have several constants (C,α, a2, x0), which need to be assigned

in some way. First, we define δ as the y location where û = 0, since it’s easy to define this

location for the above expression. This implies F (1) = 0, which in turn means that ηe = 1, or:(
3αC
√
a2

)2/3

= 1 (52)

Secondly, we apply the constraint in eqn (45), which then gives us:

C2

∫ 1

0
[1− η3/2]2dη = 1 (53)

The above constraints yield the following expressions for C and α:

C = 1.491 (54)

α =

√
a2
20

(55)

The constraint in eqn (43) implies that the growth rate of the wake thickness, δ′, when nor-

malized w.r.t. u0/U∞ is a constant a2. The value of a2 is usually reported as the ”spreading

rate”, and, typically, experiments imply a2 = 0.648, and therefore, from eqn. (55), α = 0.18.

Finally, we get the following expression for the velocity field of the wake:

U(x, y) = U∞ − 1.38

√
D

ρ(x− x0)

[
1− η3/2

]2
(56)

The value of x0 is again usually obtained from experiments.

2 Obtaining scaling for u0(x) and δ(x) without solving for F (η)

It is clear from the above process that we did not really need to solve for F (η) in order to obtain

the scalings for u0(x), δ(x). In fact, we do not really even need to assume the mixing length
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model. Starting with the self similar form for u0 in eqn (33), we can also assume a self-similar

form for the Reynolds shear stress as R12 = u20(x)h(η), where h(η) is some other function of

η. Here, we are assuming that q2 ∼ U2
s , which is reasonable, since we expect shear rate to give

rise to turbulence. We substitute these self-similar forms in eqns (24) to obtain:[
δU∞u

′
0

u20

]
F (η)−

[
U∞δ

′

u0

]
ηF ′(η) = h′(η) (57)

Requiring the terms in the square brackets to be constants, and also applying the constraint

in eqn (44) we can easily obtain the scaling δ ∝
√
x− x0 and u0 ∝ 1√

x
.

3 Entrainment of fluid

We can now ask, how much mass is entering the shear layer ? We can answer this by trying

to estimate the mass flux Q(x) =
∫∞
−∞ Udy at any x location, and then seeing how dQ/dx

varies with x. If Q′ > 0, then clearly the shear layer is ”entraining” fluid (i.e. mass is entering

from the sides), and if Q′ < 0, then the shear layer is ”detraining” fluid (or mass is leaving

the shear layer from the sides). For a self-similar profile, clearly, Q(x) ∝ u0(x)δ(x). Thus, for

a wake, Q(x) is a constant; it does not detrain or entrain fluid. Howver, for a jet, where we

can show u0 ∝ x−1/2 and δ ∝ x, we can see that Q(x) ∝ x1/2, and therefore a jet entrains

fluid. Entrainment is an especially important phenomenon in atmospheric flows. For instance,

a rising parcel of hot air (or ”thermal bubble”), will stop rising at a low height if it manages

to entrain a large amount of cold air very quickly.

4 Time and length scales of turbulence in shear flow

Clearly, the large scales in free shear flows have fluctuating velocity scale q ∼ Us(x), length

scale δ(x). Thus, the turbulent Reynolds number at any x location is Reδ = δUs/ν; clearly,

for a wake, the Reynolds number does not change with x, while, for a jet, Reδ ∝ x1/2. We

can also estimate the dissipation rate ε(x) as ε(x) ∼ U3
s /δ. Therefore, the Kolmogorov scale is

η =
[
ν3

ε

]1/4
= Re

−3/4
δ δ. Thus, for both the wake and the jet, the Kolmogorov scale increases

at larger x values. This implies that, when we perform numerical simulations, we can use a

coarser resolution of the flow at larger x. However, we will also need a larger size of the box in

the lateral (y, z) directions at larger values of x, and, in general, number of grid points in the

lateral direction will be δ/η ∝ Re3/4δ .
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