
Vorticity and Turbulence 
ME724: Essentials of Turbulence 

 (Based on “Turbulence and Vortex 
Dynamics” by Javier Jimenez) 

Instructor: Amitabh Bhattacharya 



Introduction 
 Turbulent flows contain large 

vorticity 
 Can be seen as vortex “tubes” 
 Varying size (circulation) and 

orientation 
 What is the role of vorticity ? 

 Important for transferring energy 
between scales 

 Difference between 3D and 2D 
turbulence 
 Energy transferred from smaller to 

larger scales in 2D 
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Decomposition of Velocity Field 

 Helmholtz Decomposition: We can decompose 
any vector field as follows: 

  “Gauge” condition: 

� 

u = ∇×Ψ + ∇φ

� 

∇• Ψ = 0

� 

∇× u = −∇2Ψ

Ψ = −∇−2ω
u = −∇× [∇−2ω] + ∇φ

� 

∇•u = 0
⇒∇2φ = 0
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2D Vortex Dynamics 
 Biot-Savart Law in 2D 

 Vorticity Equation in 2D 

 Vorticity is simply being advected by the flow, 
diffused by viscosity 

 Flow can be complex:  
 Velocity advects vorticity 
 Vorticity affects velocity 



Example: Rankine Vortex 

 Rankine Vortex: 
 Solid body rotation in core 
 Irrotational flow outside core 
 Circulation outside (Kelvin’s 

Theorem): 

 Velocity field 
� 

ω = 2Ω

� 

ω = 0
� 

R

� 

Γ = u•ds∫ = 2πR2Ω

� 

ur = 0

� 

uθ =
Γ /(2πr) if r > R
Ωr if r ≤ R

⎧ 
⎨ 
⎩ 
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Rankine Vortex 



Point Vortices 

 In the limit of R0, we 
get a point vortex 

 Good idealization far 
from the vortex 

 At any point distance r 
from center, velocity is: 

� 

ω = 0
� 

Γ = u•ds∫ = 2πR2Ω

� 

u = Γ
k × ˆ r 
2πr



Interaction Between Point Vortices 

 For multiple point vortices: 

 Vortices are advected by local velocity field 
 Superposition possible, since velocity field is 

irrotational 
 Correct for infinite domain; different expression 

needed for finite/periodic domains 
� 

dx i

dt
= ui = Γ j k × [x i − x j ]

2π x i − x j 2
j≠ i
∑



Interaction Between Point Vortices 

 Vortices of same sign: Circle around each other 

 Vortices of opposite sign: Travel in straight line 



Chaos From Point Vortices 

 Chaotic trajectory from more than 3 point 
vortices 



Chaos From Point Vortices 

 Difference in evolution (Lyapunov exponent) 



Finite-Sized 2D Vortices 

 Circular shape corresponds to a stable 
equilibrium 

 Self-induced rotation tends to make an 
elliptical vortex patch circular 



Interaction of Finite 2D Vortices 

 Say we have a small and large vortex 
interacting  

 When will large vortex deform small vortex ? 
 Strain rate at distance r:  
 Angular velocity of small vortex: 
 For large vortex to affect small vortex  

� 

(Circulation ΓS  and ΓL ,  separated by distance r) 

� 

S ≈ ΓL /(2πr
2)

� 

Ω ≈ ΓS /(πR
2)

� 

Ω < S

⇒ r < R ΓL
2ΓS



Roll-Up Of Vortex Sheets 

 Vortex sheet: Mixing layer with non-zero 
interface thickness 
 Several vortices placed in a line 
 Tend to roll up into large vortices (KHI) 



Vortex Mergers 

 Large vortices tend to strain and absorb 
smaller vortices 
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Inverse Cascade in 2D 

 Vortex mergers lead to inverse energy cascade 



3D Vortices 

 Biot Savart Law: 

 Vorticity Eqn: 

� 

∂ω
∂t

+ u ⋅∇ω = S ⋅ω + ν∇2ω

Sij =
1
2
ui, j + u j ,i[ ]
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Vortex Tubes 

 Vortex tubes 
 Surface of tube is parallel to 

vorticity vector 
 Helmholtz’s theorems: 

 Circulation (Γ) constant along 
tube 

 Tube cannot begin/end in 
fluid (inviscid) 

 Tube is deformed along with 
material elements (inviscid)  

� 

(From ∇•ω = 0)

� 

∂δx
∂t

+ u ⋅∇δx = S ⋅δx

� 

δx

(same	
  form	
  as	
  inviscid	
  vor;city	
  
equa;on)	
  



Vortex Interactions in 3D 

 Self-induced rotation can cause out-of plane 
rotation of tube 

 Interaction of two tubes 
 Two tubes can reconnect 



Dissipation Rate Related to Vorticity 

 Let’s start with net viscous dissipation in volume 

 Use this identity: 

 If fluxes are zero at infinity (or box is periodic): 

(Enstrophy)	
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Enstrophy Eqn: 2D vs 3D 

 Evolution of enstrophy (from vorticity eqn) 

 In 3D, vortex stretching term present 
 Can increase/decrease enstrophy 
 Allows energy exchange between vortex and 

external straining field 
 In 2D, stretching term is not present  



Strain and Vorticity 

 Strain tensor has 3 eigenvalues and 3 
eigenvectors: 
 Eigenvalues are real 
 Eigenvectors are orthogonal 
 Incompressibility implies: 

 Choosing eigenvectors as coordinate axes: 
� 

{α i,e i;i = 1,2,3}

� 

Dtωβ = (S•ω)β = αβωβ

ωβ (t) = ωβ (0)exp[αβ t]

� 

α i = 0
i
∑



Why Strain Changes Vorticity 

 Stretching of material element changes its 
moment of inertia 

 Conservation of angular momentum leads to 
corresponding change in vorticity 



Burger’s Vortex 

 For very thin vortices, viscosity and strain rate 
can balance each other 

 Consider imposed irrotational axisymmetric 
flow and axisymmetric vorticity: 

� 

U(x) =

γ x1
−
γ
2
x2

−
γ
2
x3

⎡ 

⎣ 

⎢ 
⎢ 
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, γ > 0, ω =
ω1
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Burger’s Vortex 

 Substituting into vorticity evolution equation: 

 Switching to polar coordinates: 
� 

U2
∂ω1

∂x2
+U3

∂ω1

∂x3
−ω1

∂U1

∂x1
=
1
Re

∂ 2ω1

∂x2
2 +

∂ 2ω1

∂x3
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

� 

Final Solution :  ω1(r) = Aexp[− γ Re r2

4
]

� 

1
Re

∂ 2ω1

∂r2
+
1
r
∂ω1

∂r
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = −γ ω1 +

r
2
∂ω1

∂r
⎛ 
⎝ 

⎞ 
⎠ 



Role of Vorticity in Energy Cascade 

 Turbulence consists of range of scales 
 Each scale contains vortex tubes 
 On an average, vortex tube from larger scale 

strains vortices in smaller scales (Tennekes and 
Lumley) 
 Leading to “stretched” vortices, which break into 

even smaller vortices    



Role of Vorticity in Energy Cascade 
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