Vorticity and Turbulence
ME724: Essentials of Turbulence

(Based on “Turbulence and Vortex
Dynamics™ by Javier Jimenez)

Instructor: Amitabh Bhattacharya



Introduction

dTurbulent flows contain large
vorticity
» Can be seen as vortex “tubes”

» Varying size (circulation) and
orientation

dWhat is the role of vorticity ?

» Important for transferring energy
between scales

» Difference between 3D and 2D
turbulence

“*Energy transferred from smaller to
larger scales 1n 2D
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Decomposition of Velocity Field

dHelmholtz Decomposition: We can decompose
any vector field as follows:

u=Vx¥+Vop
d “Gauge” condition: Ve W = ()

VXUZ—VZLP V.u:o

veve = V29 =0
u=-Vx[V w]+V¢

Vortical Irrotational




2D Vortex Dynamics

Biot-Savart Law in 2D
// AT y_yl_L] dz'dy’ + Vo

(z—2')2 + (y — ¥')?

JVorticity Equation in 2D cz)_»; Ve = 2

» Vorticity is simply being advected by the flow,
diffused by viscosity

dFlow can be complex:
» Velocity advects vorticity
» Vorticity affects velocity



Example: Rankine Vortex

(JRankine Vortex:

» Solid body rotation in core

> Irrotational flow outside core

» Circulation outside (Kelvin’s 2()
Theorem): =0
I'=$ueds=27R’Q
dVelocity field
— O rr /(2717‘) 1f r> R Consistent with
U, = Uy =1 Or ifr < R (3 Biot.savart law




Rankine Vortex
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Point Vortices

dIn the limit of R =0, we

get a point vortex I'= 95“ o ds=27R"Q
JGood idealization far
from the vortex
At any point distance r ®
from center, VelocAity 1S: 0n=0
u:Fer

27r



Interaction Between Point Vortices

dFor multiple point vortices:

dx' :ui:EijX[Xi_Xj]

dt = 2mx’ —X]‘

» Vortices are advected by local velocity field

» Superposition possible, since velocity field is
irrotational

» Correct for infinite domain; different expression
needed for finite/periodic domains



Interaction Between Point Vortices
dVortices of same sign: Circle around each other
dVortices of opposite sign: Travel in straight line
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Chaos From Point Vortices

dChaotic trajectory from more than 3 point
vortices

Figure 2.4: Trajectories of a vortex in a system of identical vortices initialized from
random initial positions. Left: From a non-chaotic system of three vortices. Right:
From a chaotic system of six vortices.



Chaos From Point Vortices

Difference in evolution (Lyapunov exponent)
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Figure 2.6: Evolution of the distance by which the corresponding vortices in two
systems of fifteen vortices, whose initial conditions differ by random small amounts,
diverge from one another. Each line corresponds to a different vortex pair. The
initial exponential divergence is typical of chaotic systems, while the later satura-
tion happens when the separations are large enough that the two systems can be
considered uncorrelated from one another.



Finite-Sized 2D Vortices

Circular shape corresponds to a stable
equilibrium

Self-induced rotation tends to make an
elliptical vortex patch circular

Figure 2.1: Evolution of an initially elliptic Gaussian vortex, as it circularizes under
its own induction. Time is from left to right. v/v = 1.2 x 10%.



Interaction of Finite 2D Vortices

1Say we have a small and large vortex
interacting (Circulation I'; and T, , separated by distance r)

JdWhen will large vortex deform small vortex ?
Strain rate at distance : S =T, /Q27r’)

JAngular velocity of small vortex: Q =T, /(nR*)

JFor large vortex to affect small vortex

Q< S

I
= r< R |—&
T,



Roll-Up Of Vortex Sheets

dVortex sheet: Mixing layer with non-zero
interface thickness

» Several vortices placed in a line
» Tend to roll up into large vortices (KHI)




Vortex Mergers

Large vortices tend to strain and absorb
smaller vortices

Vortex in
Small Strain

Large Strain




Inverse Cascade 1n 2D

dVortex mergers lead to inverse energy cascade

log(E(k))

log(k)



3D Vortices

(1Biot Savart Law:

wu(x) ! /w(x)/\(x_m)d3x'+V¢:uw+V¢.

T 4r |z — /|3
V¢ = 0.
dVorticity Eqn:

Vortex Stretching Term

%0+u-Va):S-lw+vV2w /

1

Sij = E[Mi’j + I/tj,l.]




Vortex Tubes

JVortex tubes

» Surface of tube 1s parallel to
vorticity vector

JdHelmholtz’s theorems:
» Circulation (I') constant along

tube
» Tube cannot begin/end in
fluid (inviscid)
(From Ve @ =0) %+u-V6x=S-5x

> Tube l.S deformed a.lon.g Wlth (same form as inviscid vorticity
material elements (1nviscid) equation)



Vortex Interactions in 3D

Self-induced rotation can cause out-of plane
rotation of tube

dInteraction of two tubes

> Two tubes can reconnect




Dissipation Rate Related to Vorticity

dLet’s start with net viscous dissipation in volume

dUse this identity:
Vul? = w4+ (V- -u)?+ V- (u-Vu—uV-u).

If fluxes are zero at infinity (or box is periodic):

2 ,3 7 y
= — ’|w| d°z. W = \w|‘3 = W;Ww; (Enstrophy)

Enstrophy needs to be large for finite dissipation rate to exist




Enstrophy Egn: 2D vs 3D

Evolution of enstrophy (from vorticity eqn)

DWW =2w-S-w+v(VW —2|Vw|?).
In 3D, vortex stretching term present

» Can increase/decrease enstrophy

» Allows energy exchange between vortex and
external straining field

dIn 2D, stretching term is not present



Strain and Vorticity

Strain tensor has 3 eigenvalues and 3
eigenvectors: {« e ;i=12,3}

» Eigenvalues are real

» Eigenvectors are orthogonal

» Incompressibility implies: Y =0

1 Choosing eigenvectors as coordinate axes:

Doy =(Sew),; =00,

Wy (1) = w; (0)explo,1]



Why Strain Changes Vorticity

Stretching of material element changes its
moment of 1nertia

dConservation of angular momentum leads to
corresponding change in vorticity

————eeET N - — -——<ZT



Burger’s Vortex

For very thin vortices, viscosity and strain rate
can balance each other

Consider imposed irrotational axisymmetric
flow and axisymmetric vorticity:

VX _a)l_

U(x) = —gxz, y>0, w=|0
Y 0
L,



Burger’s Vortex

Substituting into vorticity evolution equation:

0w oW ou, 1 (0w Jdw
s N it W L _ 1 1
? ok, T ox, “ oX, Re[ ox; T ox; ]

dSwitching to polar coordinates:

L (do 1do|__ (Mz@j
Rel or* r or N 2 or

yRe r’

]

Final Solution: ®,(r) = Aexp[—



Role of Vorticity in Energy Cascade

A Turbulence consists of range of scales
JEach scale contains vortex tubes

JOn an average, vortex tube from larger scale
strains vortices 1n smaller scales (Tennekes and
Lumley)

» Leading to “stretched” vortices, which break into
even smaller vortices



Role of Vorticity in Energy Cascade
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