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Introduction

» 2-Eqn models (k — ¢, k — w) use eddy viscosity hypothesis:

2
Rz‘j = ngL] - QI/tSij (1)
Issues:
» Reynolds stress responds instantaneously to local strain rate

» Anisotropy b;; is proportional to .S;; (Algebraic dependence)
» Normal componeents of R;; always equal (R11 = R22 = Ra3)
if S;; has only non-diagonal components (e.g. channel flow)

> Insensitive to rotation rate

» Reynolds Stress Transport (RST) models: Evolve all six
components of R;;

» Use the exact equations to construct the model
» Typically, k£ and € equations are solved as well
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Exact RST Equations

b ;ij = —¢ij — € + Py + vV Ry — aar gfkﬂ
¢ij = (ujpi)+ (wpj) Pressure Redistribution
€j = 2w <uzku]k> Dissipation rate
Py = —Ry U, — RyUj, Production
Ipij = (urujuy) Turbulent Flux
a;;: Turbulent Transport I/VQRZ'j : Viscous Transport

Need to model: Pressure Redistribution, Dissipation Rate and
Turbulent Transport
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Reynolds Stresses

Data from DNS at Re, = 2000 (Jimenez and Hoyas, JFM, 2006)
RMS velocities at Re_tau=2000 (DNS Data)

y/H

R;; is highly anistropic near the wall. 1 is the strongest

component, because Py = P33 = 0.
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Budget Terms for Turbulent Channel Flow

Data from DNS at Re, = 2000 (Jimenez and Hoyas, JFM, 2006)
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Pressure redistribution (=pressure strain+pressure transport),
along with Production and Dissipation, is very“important
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Reynolds Stresses

But why do we care about normal components, since only Rjs is
important in Channel Flow ?

Because normal components can influence budget terms for Rs.
Let's examine Py if U = U(x3) only:

Py = —leUng — R2kU1,k = _R22U1,2 (2)

Thus, production of Reynolds shear stress depends on variance of
wall normal velocity fluctuations, Ros. But Psy = 0, so where does
it get energy from ?
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Pressure Redistribution

Note that:
1};;‘
¢ij = (ujp,i) + (uipj) = —(p(ui; + uji)) +8£;j
where  Thij = Oki (up) + Onj (uip)

For incompressible flows, II;; = 0, implying:

O 0 (ugp)
i = =2
¢ oxy, oxy,

For homogeneous flows, ¢;; = 0; Pressure redistribution does not
provide any net kinetic energy.

. Theis
For inhomogeneous, 8;; can be neglected, so that ¢;; ~ II;;
Modeling ¢;; complicated due to non-local nature of pressure.
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Pressure Strain

IT = — (p(u;; + uj;)) is known as the "pressure strain”
Data from DNS at Re, = 2000 (Jimenez and Hoyas, JFM, 2006)

Pressure Strain tensor components

0.1

0.05 —

Presure strain transfers energy from Rj; to Ros and Rss
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Turbulent Transport

Start with usual gradient diffusion hypothesis:

K2 0 <uzuj>

Tkij: (ukuluﬁ = —Cs 83%

Near the wall (ugusz) is more important for transport in
wall-normal direction. So a better model is:

K, D)
<uku1u]> —Cs c <ukul> oy

Check: Near the wall, 855: will dominate, for which:

0 (uguiuj) 0 (ujuy)
8.T2

i 3)

K
—C's? (ugug)
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Dissipation Rate Tensor

Local isotropy of small scales implies that dissipation rate will be
almost isotropic outside the viscous layer, i.e:

2
€j = 2v <ui7ku]~’k> = géz‘jﬁ

(Note that € = v (u; yu; k) = 3€i;)
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Dissipation Rate Tensor

Data from DNS at Re, = 2000 (Jimenez and Hoyas, JFM, 2006)

Dissipation rate tensor components
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€;; is indeed isotropic, except very close to the wall
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Homogeneous Turbulence

Let's lump in the anisotropic part of ¢;; into the redistribution:

1 2
®ij = —(Pij — 00k + €ij — 5€0i)
So that, for homogeneous turbulence

8Rij
ot

2
= Pij+ i — gedy

Note that ¢ = 0 for homogeneous turbulence.
We need to representation for ®;;:

®;5 = Fij(Rij, Ui, €, 0ij) (4)

But let’s first further understand the nature of pressure
redistribution..
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Pressure Redistribution

Poisson Eqn for pressure fluctuation is:

” Rapid” »Qlow”

V2 = —2U; juji — (uu; — Rij) ij

Redistribution term needs to be separated into "rapid” and "slow”
terms:

Oy = ®U[Uiy, Rije,655] + @Ej)[Rij,ﬁ, dij]
Also, from dimensional analysis:

K
®;5 = eFij[bij, —Uij, 5ij]
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"Slow"” Pressure Redistribution

®;; is responsible for transferring energy between components (i.e.
it controls anisotropy), and does not contribute to K
We will therefore try to look at equation for b;;:

db; _ O(Ry/K) _10R; Ry 0K
dt ot K ot K2 ot
= %[Pz’j + ®ij — %6%’] - % [P — €]
= —biUjk — bjxUik — gsij - <bij + ;5@‘) %
—f—bij% + %.7:”

In the absence of mean velocity gradients:

dbl’j . € (s) K
dt bige t Kf [b”’e";”]
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"Slow"” Pressure Redistribution

According to experiments, if U; ; = 0, anisotropic turbulence
"returns” to isotropic state over some time scale, i.e. b;; — 0 in
the absence of any velocity gradient.

Rotta’s model:

FO = by
:>(I’S) = —Cld)ij
= 1— —_—
~ (1=C)7

where T'= K/e. C1 = 1.5 — 2.0 is typically used.

C1 > 0 needed for stable equilibrium.

Nonlinear models (in b;;) also possible, but first we need to
understand some tensor representation theory...
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Representation Theory of Tensors

Question: Say we are trying to model a tensor as

¢ij = Fi;[A, B, C...], where A;j, B;j, Cyj, .. are also tensors. What
is a tensorially consistent form for Fj;[-] ?

Recall, for a vector x, if the coordinate system is represented by
basis €; instead of e;, where a;; = e; - €; then:

X = €IT; =e;r;

=T; = € €;T; = ajT;

Vector is a "first order tensor”, because it has only one subscript
index. For a second order tensor, b:

b = ékélbkl:eiejbij
= by = aajbi
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Representation Theory of Tensors

Why do we care about tensors ? Because R;; (and therefore b;;)
are tensors.

Proof: First note that u; is a tensor, so that 4y = a;u;

Rij = <uluj>
= Ry = (upty) = agiarj (uiug)
= Rp = agaRij
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Representation Theory of Tensors

An Isotropic Cartesian Tensor Function Fj;[A,B, C...] has the
property that after a coordinate transformation:

F;[A,B,C..] = apa;F;A,B,C..]
Example: Say, F;[A,B| = A;; By, then

Fij[A,B] = Ay By = aimkagrasjAumBys
aliémqasjAlmqu = aliasjAquqs
ajiasi Fis[A, B

Clearly, tensor products A - B are Isotropic Cartesian Tensor
Functions. Is there a general way to construct such functions ?
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Representation Theory of Tensors

Method to Construct Isotropic Cartesian Tensor Functions:
Take any two vectors a, b. Clearly, a;b;F;;(A,B,..) will be :

» A scalar quantity (i.e. does not change with rotation)
» Containing terms linear in a and b (e.g. something like
a;b;Fij(A) = —1— not possible).
10545
» Containing terms that can depend on A, B..

For example, we can just list all the possible terms in a;b;Fi;(A)..

a;bjFy; = Crapby + CoarbiAgy + Csapbp Ag Ay, +
Caar At Ay Amnbn + ...

Here C1, Cs, .. are functions of scalar invariants of A. So, most
general form for Fj; will be:

F,;, = 0151'3‘ + CQAij + CgAikAkj + C4AikAklAlj + ..
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Representation Theory of Tensors

So, the most general form for F(A) seems to be:
F = CiI+CyA+C3A% +CA3 + ..

Which can have infinite number of terms | Thankfully, Cayley
Hamilton Theorem says :

A% = 1116 — I1A;; + 1A%
I = M+X+A3=A4
o= =54} - P
I = é[A%k + 11T — A%, 1]
Therefore, most general representation is :
F = CI1+CA + C3A?

where Cy = Co(1,11,111)



Nonlinear Terms In Slow Pressure Strain

More general model for slow pressure strain is

FY = Cobij — Ciby + CROZ

-7:1'(;) = 0 implies Cp = —%bik Thus:

dbiy € € (s |, K o
i b”K + K]:"j [b”, ; ,523]
_ bij - (b5 — 30R0)
= (1-C) T + (1 -7

" Realizability” is still a major concern, i.e. at all times (Ryqo) > 0
fora=1,2,3
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Realizability for Slow Pressure Strain

We can analyze evolution of b;; in the principle coordinate frame,
where diagonal terms of b;; are zero.

Let's look at b1 = R11/K —2/3. Ry > 0 implies b1; > —2/3
At b1 = —2/3 b33 = —b11 — byg = 2/3 — boo. We can write db11
as:

db11 2 2 2
dt = —g(l — C1) + O} (b3, — §b22 - §)

RHS has minimum value of [C; — 1 — 2C7. For db“ > 0 at this
minimum RHS value, we therefore need:

o < S

Typical values : C; =1.7, C} =1.0
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"Rapid” Pressure Strain

Recall:

= (ujp;) + (uip)

Focusing on the pressure fluctuation due to homogeneous strain

rate U; ;:
Solving for p..
p(x)
Ip(x)

Vi = —2Uu

(V)™ (20U yuy 1]

% 1 8ul(x/) d?’X/

2 ) |x— X’\ 83”2

Ukl uy(x )d3 /
’\ 83: Loz,

—Uk,l(v )7 [2ug ]
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"Rapid” Pressure Strain

After making a change of variable & = 2/ — x; and some algebra,
we will get:

¢§;) = —M;jUy,
where M = Q(Vg)fl [le,ik (5) + R j (5)}
We can derive the following for M;;:
» Contracting j, k, we get M;;; = 2Ry (Constraint 1)
> ¢i; = 0 implies My, = 0 (Constraint 2)
> ¢ij = ¢ji implies M, = Mjjr; (Constraint 3)
Also, clearly, M;;x = M;ji[dij, bij] (i.e. does not depend on U ;)
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"Rapid” Pressure Strain

An important limiting case is isotropic homogeneous turbulence
undergoing constant shear. In this case, at initial time, |bij| ~ 0,
and we can approximate M;ji = M;jj[0i5].
Most general representation for M;;;:

My = Adijom + Béidj + Ciydjp
Constraint 3 implies B = C, so that:

Mijii = Adijon + Bloirdji + 6:10i]

Constraint 2 implies 3A = —2B, and Constraint 1 implies:

2 2
Miju = [-3B+4BJoq = 2Ry = 2K [bz‘z + 351'1}
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"Rapid” Pressure Strain

Neglecting b;;, we get:

K
M = 5 [65ik5jl +60;105 — 45ij5kl]

No model constants ! For qbl(.;), we get:

2

by = K[Uij+Ujd (5)
The "isotropization of production” model (IP model) for gbg)

proposes, for large b;;:

3 2
o = 5 [Pz“ - 35z'jp] (6)
For b;; = 0, eqns (5) and (6) are the same.

Basic idea of IP model: ;; tends to reduce anisotropy in the
production, or it tends to isotropize net production.
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Total Pressure Redistribution

Final model (using only linear term for qﬁ(’”)) for total pressure
redistribution is:

2
q)ij = —Clebi]’ — 02 |:‘PU - 3(SZP:|

Ci = 17, Cy=3/5

Also known as the Launder-Reece-Rodi Isotropization of
Production (LRR-IP) model.
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Asymptotic State of Anisotropy

Validate LRR-IP model against DNS data by applying simple shear:

oU;
8:L'j

= Soindjo

St
Fig. 11.15. Reynolds-stress anisotropies in homogeneous shear flow. Comparison of

LRR-IP model calculations (lines) with the DNS data of Rogers and Moin (1987)
(symbols): e, byy; o, bya; triangles, by ; squares, by,
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Analytical Solutions for Homogeneous Shear Flows

Find b;;(t), starting with isotropic turbulence, b;;(0) = 0.
Assumptions:

K(t) = Koexp(At), €(t) = egexp(At)

Hence, K/e = Ky/¢g for all time ¢.
From DNS data: Anisotropy components tend to a constant
value: limy—,o b;5(t) = b3y

—K(#)bU; ; >
P ()ZJ bJ _7SK0 ‘fgz%:constant
€

too e egexp(At) e
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Analytical Solutions for Homogeneous Shear Flows

In the limit ¢ — oo, using the IP model and Rotta model for ®;;:

dij o _ Llp e 2l =L 25
SL=0 = [PU+<I>” 3654 - [b@]+36w] [P —¢]
2 2
=0 = _F)Z'j—CQ Pij—géijP —Cl€bij—§5ij6—
2
bij(P—e)—géij(P—e)
1 2 (1— Cy)P/e
i = = P —=ps;: | /P, h _
= byj 2@( i3 5j>/ where © Ci =11 Pe

For this flow, Pi;1 = —R12S = —Kb12S = 2P, Pys = P33 =0,
implying:
2 o
11 3@, 22 = b33 3

by = —Mé@(l ~0)
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Analytical Solutions for Homogeneous Shear Flows

For P/e = 00, © — (1 — (), b;j goes to a constant value.
What does K — ¢ model predict ? For any value of P/,
b11 = b = b33 = 0.

Also according to 2 eqn models:

bia = —Cu(SK]/e)
P SK
— = —RpS=-ba—
€ €
_ M
Cu
P
= b12 = 4+ CH?

So, when % — 00, big — +00o, which is incorrect.
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Analytical Solutions for Homogeneous Shear Flows

4 6
Production/Dissipation

Experimental results for P/e = 1.6 (Tavaularis and Karnik, 1989) :
b11 = 0.36 £ 0.08, bag = —0.22 £ 0.05, b33 = —0.14 = 0.06,
b1 = —0.32 £ 0.02
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Modeling the Effects of Inhomogeniety

Dissipation rate €;; = 2v (u; yu; ) is non-zero and anisotropic at
wall. Important to capture its wall asymptotics. Recall, near the
wall:

ul(xa t) = al(t)y + O(yz)a UQ(X, t) = QQ(t)yQ + O(yg)v
uz(x,t) = az(t)y +O(y?)

Implies, that, near y = O:

1
<u% + u% + u§> = 3 <a% + a§> y2 + O(y4)

N =N =

ok = v {(uly+usy+uz,) =v{ai +a3) + Oy?)

Amitabh Bhattacharya ME724:Reynolds Stress Transport Models



Modeling the Effects of Inhomogeniety

Also,
(@) y®  (aag)y® (maz)y?
R;; = (aga1) y® (agas)y* (agas)y?® | + Higher Order Terms
<a3a1>y2 <@3a2>y3 (a3a3>y2
(1)  2{aia2)y  (a1a3)
€ = 2v| 2(agar)y 4{a3)y* 2{azas)y | + Higher Order Tern

asa
2(aza1) 2(asa2)y (a}
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Modeling the Effects of Inhomogeniety

Possible to show, that near the wall:

B for i#2 ANDj#2
e ) 2% for i=2 ANDj#2
€ 2% for j =2, ANDi#2
4%y for i=2 ANDj =2

Rotta (1951) proposed following model for dissipation for
inhomogeneous flows:

Underestimates €12 and €99 by factors of 2 and 4. Goes to
€i; = (2/3)d;;¢€ in isotropy.
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Modeling the Effects of Inhomogeniety

Redistribution tensor is redefined as:

1 R;;
i = —(¢ij — 30 Pk + €5 — ?]6)

Complete RST equation for inhomogeneous flows is then:

DRZ']'
Dt

= Pij—i-q)z‘j —

. 2p.. .
Ry . "Ry 0 [CSK aRﬂ
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Modeling the Effects of Inhomogeniety

Comparison of ®;; (redistribution term) from LRR-IP model with
DNS data of channel flow at Re, = 2000 (Hoyas and Jimenez,
2006)

@ @
0 £ 0 600 z
N ——  |—o% —DN
/ 400} |
1
s i 300} |
\
-600 " 2008 |
h 100f
1 bt Y
-800 f g |
-1000 -100
0 005 0.1 0.15 0.2 (] 0.05 0.1 0.15 0.2
yH yH
3 3
400 » 200 2
1 —DN I —DN
,] "
3001 \
1
! 1
200§ |
\
100 \
0

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
yH y/H
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Elliptic Relaxation (Durbin)

Near wall behavior of LRR-IP model is poor. Non-locatlity of
pressure is not accounted for.

Elliptic Relaxation technique attempts to account for non-locality
of pressure.

First, note that, in the presence of a wall at y = 0:

1 1 ouy (2, 2" |Y'|) 5,
p(x) 27 / |x — x/| o ox), x

We can write:

(uip,j)

; /<ui(x)8S(x’)/8z;>d3 /

4r |x — x/| x

Exact form of S(x) is not very crucial here.
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Elliptic Relaxation

When turbulence is inhomogeneous, we can model the 2-point
correlation in integrand as:

<“z‘<x>8§i}fl) > — Qux)expl-x ~ X|/L]
J

where L is the length scale of the correlation. Thus:

) expl=he = x|/ 1
<Uzp,] /Qz] 47T’X X’ d?’x/ (7)
Turns out that this is the solution to the modified Helmholtz
equation !
wip,j
V2 (uip ;) — < ZLQJ> = —Qy

For complex geometries, solving for above equation is easier than
carrying out the integral in eqn (7).



Elliptic Relaxation

Note that, for homogeneous flows, fu mz] = Qij. So, Q;j is simply

the homogeneous limit of the redistrlbutlon tensor.
Denoting the homogeneous model for redistrubution tensor as:

(I)g = —Clébw 02|: ij (51JP:|
¢, = 17, Cy=3/5
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Elliptic Relaxation

Elliptic relaxation then involves solving the following eqn for

fij(x) = ®45(x)/ K (x):

22 ;]
i
Lv fz‘j - fij = —?
K3/2 3\ 1/4
where L = max [cL,c —n (V)
€ €
Cr =02, ¢, =380

®;; = f;; K is then used to get the final redistribution tensor.
Solving for f;; (instead of ®;;) ensures that ®;; = 0 at the wall.
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Elliptic Relaxation: Boundary Condition

Boundary conditions for f;; can be tricky:

—5.0limy,o €222 for i =2,j =2
0 for (i,7) € {(2,1),(2,3),(1,2),(1,3)
fijly=0 = ; o
-2 for (z,7) € {(1,1),(3,3)}
y=0

Let's show this for foo
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Elliptic Relaxation: Boundary Condition

At the wall, the RST model gives:

Ry 0% Roo
K
T Vop

Near the wall (i.e. y — 0), K = Koy?, R = Roy* and € is a
constant. So,

Ra *K Ry 2
K T Vop k- 2vi
0’R R
v 3y222 = 121/R0y2:66%
Leading to:
_ . Roo
foly=o = =Sl

Amitabh Bhattacharya ME724:Reynolds Stress Transport Models



Elliptic Relaxation

Elliptic relaxation appears to bring down the peaks near the wall,
especially for ®99

005 0.1 015 02 ~o 005 01 015 0.2
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The v?> — f Model (Durbin)

Full RST models with elliptic relaxation can be expensive to
implement and may be numerically unstable. Durbin's v? — f
model is a more inexpensive option.

Only the Ryy equations are solved like a scalar (along with k — ¢

model), with elliptic relaxation. Rg is renamed as "2,
o(w?) o) () 9 (v?) 2/ 2
o + U oz, + € © = kf+87$k vr D, + vV <v>
og2p_p _ Lo () 2
PNf=1 = —apts ( K 3

Cy = 0.3, C1 = 0.4

E<’U2>

Boundary condition is: f = —5lim, o [ oo ] vr =C, (v¥) T is

used as eddy viscosity in mean velocity equation.
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Case Study: Rotating Channel Flow

Non-dimensional Rossby number: Ro, = Q2H /Uy, H = half
channel height

Reference for LES data: Piomelli, Ugo, and Junhui Liu. "Large
eddy simulation of rotating channel flows using a localized dynamic
model.” Physics of Fluids 7, no. 4 (1995): 839-848.

15
5 10F
N
05 Y
o,
0.0
-10 -05 0.0 05 10
y/6
40
) (6)
s 200 _ J
. J/"““'—
40
(c)
3 20f f |
. *
1 10 100 1000
"

FIG. 1. Mean velocity in the rotating channel. Re,=5700, Ro,=0.144.
—— First-order; --- zeroth order; —-— plane-averaged; ——— 2.5
log y*+5.0; X DNS (only every other point is shown). (a) Global coordi-
nates; (b) wall coordinates, unstable side; (c) wall coordinates, stable side.
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Physics of Rotating Channel Flow

Positive €2 implies CCW rotation. Mean velocity eqn is:

orP 0, oU
0 Ox + 3y( dy ~ Faz)
0P OR2
0 3 2QU 5

Coriolis force does not affect mean velocity directly: effect must be
through Ri2. Net production term in DR;2/Dt due to Coriolis
term is:

au
—Roo— — 2Q(R11 — R
22 y (R11 22)
Positive €2 reduces net production of Rpo if % is negative, and
vice versa. P = —ng%, so TKE production is also reduced as a
result.
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Case Study: Rotating Channel Flow

Model: RST with Elliptic relaxation

Reference: Wizman, V., D. Laurence, M. Kanniche, P. Durbin, and
A. Demuren. "Modeling near-wall effects in second-moment
closures by elliptic relaxation.” International journal of heat and
fluid flow 17, no. 3 (1996): 255-266.

10.0

5.0

0.0
-1.0

0.0 05 10
Figure 14 Mean velacity profiles for increasing rotation rates
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Case Study: Rotating Channel Flow

Model: RST with Elliptic relaxation

Reference: Wizman, V., D. Laurence, M. Kanniche, P. Durbin, and
A. Demuren. "Modeling near-wall effects in second-moment
closures by elliptic relaxation.” International journal of heat and

fluid flow 17, no. 3 (1996): 255-266.

15— - L5
—0R,=0.00 6--©R,=000 ‘
* -~ %R,=005 =
¢--9R,=015 ‘Mm
10 Lo a--DR,=050 o
e

00 W — T

present model

) S T
10 -05 00 05 10 -10 -05 00 05 10

Figure 13 Shear stresses for increasing rotation rates
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Case Study: Flow over Backward Facing Step

Model: v2

—f

Reference: Durbin, P. A. "Separated flow computations with the
k-epsilon-v-squared model.” AIAA journal 33.4 (1995): 659-664.

©

0

Fig.

| -
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10U +x
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0
Fig. 2 Skm fnclmn coefficient on wall downstream of the backstep

3 Mean velocity profiles for the Jovic and Driver

Amitabh Bhattacharya

of Jovic and Driver (——-, A) and Driver
and Seegm-ller (=== ).

ME724:Reynolds Stress Transport Models



Case Study: Flow in a Diffuser

Model: v? — f
Reference: Durbin, P. A. " Separated flow computations with the
k-epsilon-v-squared model.” AIAA journal 33.4 (1995): 659-664.

= TR
10U +x

Fig. 8 Mean velocity profiles in the Obi et al. diffuser, both Eq. (9)

(——-) and a constant value of 1.5 (~--) were used for CZ,, light

dashed lines show the diffuser surface.

Fig. 9 Contours of U velocity component in the Obi et al. diffuser:
(——-) positive values; (- - -) negative values.

Amitabh Bhattacharya ME724:Reynolds Stress Transport Models



Case Study: Multiple Impinging Jets

Model: modified elliptic relaxation with RST model

Refernce: Thielen, L., K. Hanjali?, H. Jonker, and Remi Manceau.
"Predictions of flow and heat transfer in multiple impinging jets
with an elliptic-blending second-moment closure.” International
Journal of Heat and Mass Transfer 48, no. 8 (2005): 1583-1598.

@ W v (DI a— N~}
plane 1 (x/D=0.0) .
x,U :
nozzle plate ¥ ) k H )
® i
< L -

1] !
i horizontgl ol / \\/ Az

sualisation plaj

impingement plane Y ] IAy

Fig. 1. The computational domain (one quarter of the flow) (a), the position of the planes on which the results are visualized (b) and a
sketch of the location of the profiles presented (c). The eye indicates the view direction used to visualize the planes. Dashed lines
indicate the lines along which the profiles are plotted.
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Case Study: Multiple Impinging Jets
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©k—v2—f (d) PIV measurement

Fig. 5. Velocity parallel to the impi plane, scaled with the jet bulk velocity (V/Wy), in Plane 1 (x/D = 0.0). The wall
jet of the undisturbed jet extends beyond y/D =2.0.
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Case Study: Multiple Impinging Jets
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Fig. 4. Square set-up: contours of velocity normal to the impi plane, scaled with the jet bulk velocity (W/Wy), in
Plane 1 (x/D =0.0).
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Case Study: Multiple Impinging Jets
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Numerical Issues

Grid generation issues:

>

For low-Re RANS models, make sure that grid point at wall
has width v/u, in wall normal direction.

At the edge of boundary layer, wall normal grid size should be
around /20

Wall-parallel grid size can always be around §/20

Use square grid cells in free shear flows, with size §/20 (here 0
is the width of the shear layer)

Grid consistency tests can be conducted only for low-Re

RANS models. For these tests, do not reduce the size of
wall-paralel grid cells.

For wall-modeled RANS, grid consistency tests cannot really
be conducted, especially for the part of the grid near the wall.
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Numerical Issues

Time stepping:

» Make sure you account for viscosity when calculating time
step from CFL: At = Copr min[A/U, A?/v]. Near the wall,
viscosity will determine time step.

» Better to use a fully implicit scheme for viscosity to get rid of
this issue. Most solvers do not come with this feature.

Numerical discretization:

» Usual CFD discretization (e.g. finite difference, finite volume)

may be used

» Usually upwind schemes can be used for RANS models, since
the model itself may introduce a much larger uncertainty.
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Numerical Issues

Most non-conservative terms will either be production (4) or
dissipation (—) terms.
dk k
+

da T
Implicit time stepping: production terms can become singular (or
stiff) at larger time steps

R
1+ At)T

kn+1

Explicit time stepping: dissipation terms can introduce negative
factor for large time steps

Evtl = k(1 F At/T)
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Numerical Issues

Rule of thumb: make dissipative terms implicit, production terms
explicit. For example,

dk

@ _ p_
dt ¢

can be discretized as:

n
kn+1 = K"+ At (Pn _ Z:nkn+1>

How do OpenFOAM/Ansys carry out the time stepping ? You
should always check.
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Numerical Issues

RST models are known to be numerically unstable. Reynolds stress
components are coupled to each other.

For mean velocity equation, Reynolds stress appears as a body
force (instead of an eddy diffusivity). One way to increase stability
for U equation is to add and subtract diffusive terms:

oU; oU; 0 OP
i) e 2 : (T’L+1) O 2 .
ot +U]3:Uj O:Ej[ vr i) xi+yv U
0 _(n) 0
8x]R 8:r;j[ vr i)
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Numerical Issues

Boundary conditions for f, €, w can be stiff. They can be made
less stiff by making the bc implicit. For example, at wall:
K KM (y)

= 2v lim
8y2 y—0 y2

) ly=0 = v

y = y1 (y location of first off-wall grid point) is usually taken
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