
11. Instability

Drazin & Reid (1981) define hydrodynamic (in)stability as that branch of hydrodynamics con-

cerned with “when and how laminar flows break down, their subsequent development, and their

eventual transition to turbulence.” From this definition, we can propose the following general

procedure for studying hydrodynamic stability mathematically:

1. Start with a laminar solution to the hydrodynamic equations (e.g. Mass conservation and

Navier-Stokes equations).

2. Perturb the laminar solution with small disturbances, usually sinusoidal in space and time.

3. Substitute the disturbed solution into the hydrodynamic equations to derive disturbance

equations. This generally yields an eigenvalue problem for the wave number and frequency

of the disturbances.

4. Solve the eigenvalue problem to study instability: solutions of the perturbed equations for

which the disturbances grow in time are called absolute instabilities and solutions which grow

in space are called convective instabilities; solutions that are damped are stable.

In this chapter we illustrate stability analysis through two classic examples: Kelvin-Helmholtz

instability and general shear-flow instability. For Kelvin-Helmholtz instability, we first use a

heuristic approach to derive the Richardson number and to give a physical understanding (in-

tuition) of the flow and instability mechanism. We then implement a classical stability analysis

(following the steps outlined above) to compliment the heuristic approach. For the general shear

flow instability, we again use our general analysis approach, and derive the classic Rayleigh

inflection-point theorem, a necessary, but not sufficient, condition for inviscid shear flow insta-

bility.

For further reading on hydrodynamic instability consult, among others, Drazin (2002), Drazin

& Reid (1981), Acheson (1990), Joseph (1976), Iooss (1990), Lin (1966), Betchov & Criminale

(1967), Chandrasekhar (1961) and a wealth of journal articles, especially in the Journal of Fluid

Mechanics.

11.1 Kelvin-Helmholtz instability

Kelvin-Helmholtz (K-H) instability, shown experimentally in Figure 11.1, is a classic type of

instability generated in density stratified shear flows. The instability develops when small waves

at the picnocline (region of steepest density gradient) become unstable and begin to role up

into the characteristic K-H billows. The K-H instability enhances mixing both mechanically
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Fig. 11.1. Kelvin-Helmholtz instability of stratified shear flow taken from van Dyke (1982).
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Fig. 11.2. Density stratified shear flow profiles.

(through roll-up of the billows) and diffusively (through the creation of strong density gradients

and mixing within the billows themselves).

In this section we seek to predict the conditions necessary for the generation of K-H instability:

first through a heuristic argument, and then later through a more formal inviscid theoretical

analysis.

11.1.1 Heuristic approach

Consider the density and velocity fields depicted in Figure 11.2. To test the stability of such

a stratified shear flow, imagine the behavior of a packet of fluid initially at y that moves up

to y + η, where η is a small vertical displacement (refer to Figure 11.3). To satisfy continuity,

another fluid packet must also move from y+η to y. Due to the stratification, the fluid packet at

the new level (y+η or y) experiences a buoyant force directed back to the original position. Due

to the shear flow, however, kinetic energy (KE) is advected with the fluid packet, and the packet

is accelerated as it joins the new fluid layer. As a rule-of-thumb, instability can be expected when

the KE lost by moving into another layer is greater than the buoyant work required to move the

fluid packet to the new layer.
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Taylor series expansion:

f(x) = f(x0) + df
dx

(x - x0) + H.O.T.
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Fig. 11.3. Small displacement in density stratified shear flow.

To calculate the buoyant work needed to move the heavy fluid (at the point y), consider

the buoyant force acting on the fluid packet. The change in buoyancy, ∆B, of the fluid packet

moving from y to y + η is given by

∆B = gρ(y) − gρ(y + η)

= gρ(y) − g

(

ρ(y) +
dρ

dy
η + ...

)

= −g
dρ

dy
η (11.1)

where we use a first-order Taylor series expansion in line two to calculate ρ(y + η) (refer to

Figure 11.3). The work done on the fluid packet is the buoyancy integrated along the path, δy,

giving
∫ δy

0
−g

dρ

dy
ηdη = −g

dρ

dy

(δy)2

2
. (11.2)

Since the change in buoyancy is the same for the lighter fluid moving down, the total work is

the sum of both contributions, giving

WB = −g
dρ

dy
(δy)2. (11.3)

To calculate the change in KE, first consider the total KE before the fluid packets exchange

place. Using the Boussinesq approximation, the density gradient is ignored, and the KE is

calculated from the mean density ρ0 giving

KE1 =
ρ0

2

(

u2 + (u+ δu)2
)

=
ρ0

2

(

2u2 + 2uδu+ (δu)2
)

(11.4)

where u is the velocity at the level y and δu is the velocity at y + η. Once the fluid packets

exchange place, we can calculate the new KE by assuming that each particle takes on the mean

velocity between the two levels:
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KE2 =
ρ0

2

(

2

(

u+ (u+ δu)

2

)2
)

=
ρ0

8

(

8u2 + 8uδu+ 2(δu)2
)

=
ρ0

2

(

2u2 + 2uδu+
1

2
(δu)2

)

. (11.5)

The total change in KE is given by

∆KE = −
ρ0

4
(δu)2, (11.6)

and this is the amount of kinetic energy lost by exchanging the two fluid packets.

Using our heuristic definition for when to expect instability, we have

∆KE > WB

ρ0

4
(δu)2 > −g

dρ

dy
(δy)2

1

4
> −

g

ρ

dρ

dy

/

(

du

dy

)2

. (11.7)

We recognize the right-hand side of (11.7) from Chapter 8 as the gradient Richardson number

(Ri). As our heuristic derivation clearly points out, Ri is the ratio of the work required for mixing

done against buoyancy to the kinetic energy available from to the shear velocity profile. The

Richardson number is an important parameter used to describe the stability of stratified shear

flows. The threshold of 1/4 is often used to predict the onset of reservoir mixing (usually due to

seiching or wind mixing), in particular thermocline deepening. Here, it provides a rule-of-thumb

for the onset of Kelvin-Helmholtz instability in a density stratified shear flow.

11.1.2 Theoretical approach

We now follow the mathematical procedure outlined in the introduction to this chapter. As we

will see, the main challenge in a theoretical stability analysis is to find the appropriate equations

and boundary conditions.

Consider the two-layer system depicted in Figure 11.4. For our analysis we will make the

following simplifying assumptions:

1. The two fluids are immiscible.

2. Inviscid analysis is applicable (i.e. the viscosity approaches zero, implying the Reynolds

number, Re, is large).

3. The flow is irrotational. This assumption follows Kelvin’s original analysis and is valid if the

initial disturbances are irrotational since irrotational flow persists in inviscid theory. If we

extend the analysis to include rotational flow, however, the criterion for instability turns out

to be no more restrictive; thus, Kelvin’s analysis provides a necessary and sufficient stability

criterion (Drazin 2002).

4. Convective terms of the momentum equation and boundary conditions can be linearized

(implying the disturbances are small compared to the base flow).
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Fig. 11.4. Definition sketch for K-H theoretical stability analysis.

To applying the following results to a natural system, these assumptions must be verified. Since

these are common assumptions, we expect this analysis to have wide application to environmental

flows.

The first step of our general approach is two define the basic laminar flow conditions. From

the profiles in Figure 11.4, we have for the upper layer

u = U0ı (11.8)

ρ(z) = ρ1 (11.9)

p(z) = p0 − gρ1z (11.10)

and for the bottom layer

u = 0 (11.11)

ρ(z) = ρ2 (11.12)

p(z) = p0 − gρ2z (11.13)

where U0 is the uniform velocity in the upper layer, p0 is the pressure at the interface, ρ1 and ρ2

are the densities of the upper and lower fluids, respectively, and z is positive upward and zero

at the interface. These equations are, thus, one possible laminar inviscid solution to a density

shear flow.

The second step is to impose small disturbances to the base laminar flow. Without yet

specifying their form, we define the velocity disturbances in the upper and lower layers as q1

and q2, respectively. Thus, the disturbed velocity profiles become

u1 = U0ı + q1 (11.14)

u2 = q2. (11.15)
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Substituting the disturbances into the conservation of mass and the inviscid Navier-Stokes equa-

tions and linearizing the convective terms, we obtain the following set of governing equations:

∇ · q1 = ∇ · q2 = 0 (11.16)

∂q1

∂t
+ U0

∂q1

∂x
=

∇p1

ρ1
(11.17)

∂q2

∂t
=

∇p2

ρ2
(11.18)

where p1 and p2 are the dynamic pressures of the disturbances. To complete step two, however,

we must still specify the boundary conditions.

We first specify a kinematic boundary condition: fluid particles can only move tangentially

to the fluid interface. The interface location is defined by the function

F = zi − ζ(x, t) = 0 (11.19)

where ζ(x, t) is the interface disturbance (refer to Figure 11.4). The normal velocity, qs, at the

interface is given by the material derivative of F :

∂F

∂t
+ qs · ∇F = 0. (11.20)

After linearization, we obtain for the top and bottom layers, respectively,

∂ζ

∂t
+ U0

∂ζ

∂x
= w1 (11.21)

∂ζ

∂t
= w2 (11.22)

taken at z = 0, where w1 is the vertical velocity in the upper layer and w2 is the vertical velocity

in the lower layer.

The second boundary condition is a dynamic one: the normal stress of the fluid is continuous

at the interface (Drazin 2002). For an inviscid fluid, this means that the pressure is continuous

at the interface. For irrotational flow, the total pressure at the interface has a dynamic and

gravitational component, giving

p1 − ρ1gζ = p2 − ρ2gζ (11.23)

applied at the linearized interface, z = 0.

The final boundary condition is that the disturbances die away far from the interface (at

z = ±∞).

The third step in our analysis is to substitute the disturbances into the governing equations.

At this point we must specify the form of the disturbances. Assuming sinusoidal disturbances

and applying separation of variables, we have for the upper layer
(

p1

w1

)

=

(

P1

W1

)

e−kzei(kx−ωt), (11.24)

for the lower layer
(

p2

w2

)

=

(

P2

W2

)

ekzei(kx−ωt) (11.25)



11.1 Kelvin-Helmholtz instability 193

and for the interface

ζ = Zei(kx−ωt) (11.26)

where k and ω are the wave number and wave frequency of the disturbances, the capitol letters

are constant coefficients and the sinusoidal functions are written with implied real-part operators

(i.e. we only retain Re(Aeiωt)). Note that the chosen z-dependence in the disturbance equations

already satisfies the final boundary condition. Because the flow is inviscid, these disturbances

also form a velocity potential φ, and the conservation of mass equations (11.16) are satisfied

implicitly.

Now we can define when the flow becomes unstable. If we assume the wave number, k, is

real, and allow ω to be complex, we can rearrange the exponential in the above equations to

give:

e−iωt = e−i(ωr+iωi)t = e−iωrteωit. (11.27)

The first term, e−iωrt, is just a sinusoidal function. The second term, eωit, is a monotonic function

of time. If ωi is less than zero, this term becomes a damping function and we have stability; if

ωi is equal to zero, we have neutral stability (the disturbances neither grow nor decline); and, if

ω is greater than zero, the final term becomes a growth function and we have instability.

Substituting the disturbances (11.24) and (11.25) into the remaining governing equations

(11.17) and (11.18) and boundary conditions (11.21), (11.22), and (11.23), we obtain the follow-

ing matrix equation














i(kU0 − ω) −1 0 0 0

−iω 0 −1 0 0

g(ρ2 − ρ1) 0 0 1 −1

0 0 −iω 0 k/ρ2

0 i(kU0 − ω) 0 −k/ρ1 0





























Z

W1

W2

P1

P2















=















0

0

0

0

0















(11.28)

which is a classical Eigenvalue problem for ω and k. To have a non-trivial solution the determi-

nant of the coefficient matrix must be zero, which leads to

(ρ1 + ρ2)ω
2 − 2kU0ρ1ω + k2U2

0ρ1 − kg(ρ2 − ρ1) = 0. (11.29)

This equation specifies the relationship between k and ω and is called the dispersion relation.

Applying the quadratic equation, we can obtain solutions for ω:

ω =
kU0ρ1 ± i

√

k2U2
0ρ1ρ2 − kg(ρ2 − ρ1)(ρ1 + ρ2)

(ρ1 + ρ2)
(11.30)

thus, we now have a general criteria to judge the likelihood of instability.

11.1.3 Applications of the results

To investigate the behavior of (11.30), consider the following special cases (adapted from Drazin

(2002)). As we see in this section, the work of doing a theoretical analysis pays off by providing

information to a wide range of applications.
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Surface gravity waves. First, consider the case U0 = ρ1 = 0, which is the model of surface gravity

waves in deep water. (11.30) then reduces to

ω = ±
√

kg (11.31)

which doesn’t have an imaginary part and is, thus, always stable. Calculating the wave speed

c = ω/k, we obtain the well know result for linear deep water waves

c =

√

g

k
. (11.32)

Since our linear analysis shows that surface gravity waves are absolutely stable, we would expect

that non-linear effects are responsible for surface wave breaking. This turns out to be true: non-

linear effects create wave steepening which leads to wave breaking.

Internal gravity waves. Now consider the case of internal gravity waves, where U0 = 0 and

ρ1 > 0. In this case the dispersion relation gives

w =
±
√

kg(ρ2
2 − ρ2

1)

(ρ1 + ρ2)
(11.33)

which is stable only for ρ2 > ρ1; if the heavier fluid is on top, we have instability. The stable

wave speed is

c = ±

√

g(ρ2 − ρ1)

k(ρ1 + ρ2)
(11.34)

indicating that the internal wave phase speed is reduced from the surface gravity wave phase

speed (
√

g/k) by the normalized density difference between the layers.

Kelvin-Helmholtz instability. So far we have shown that as long as the fluids are stably stratified

and not moving the system remains stable. Now we consider the case of the upper fluid moving:

|U0| > 0. From the dispersion relation we now have the stability criterion

U2
0 ≤

g

|k|ρ1ρ2
(ρ2

2 − ρ2
1); (11.35)

otherwise, ω has imaginary parts and the flow is unstable. This equation shows that the density

differences, through the effects of buoyancy, provide a means of stabilization. When the densities

are equal, the right-hand-side is zero and for any U0, the flow becomes unstable. As the density

differences grow, the right-hand-side becomes larger and stronger shear flows remain stable.

Surface tension can also provide stabilization (see Acheson (1990)), and for surface tension

T , the stability relation becomes

U2
0 ≤

(ρ1 + ρ2)

ρ1ρ2

(

|k|T +
g

|k|
(ρ2 − ρ1)

)

. (11.36)

We can also compare these theoretical results to those developed in our heuristic approach.

To do this, we need to define a characteristic vertical length-scale, L. One possible choice is to

select L such that the non-dimensional wave number for the most unstable mode is of order 1,

that is

k∗ = k0L = O(1) (11.37)
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where k∗ is the dimensionless wave number and k0 is the wave number that provides the largest

disturbance growth rate. Using this length scale and assuming continuous profiles of velocity

and density gradient, we can use Taylor expansion to define

∆u = U1 − U2 =
du

dz
L (11.38)

∆ρ = ρ1 − ρ2 =
dρ

dz
. (11.39)

Substituting these results into (11.35) we obtain

kL

2
> −

g

ρ0

dρ

dz

/

(

du

dy

)2

(11.40)

where we have used the Boussinesq approximation to write

ρ1 + ρ2 = 2ρ0. (11.41)

Instability is triggered through the most unstable mode of the disturbances; thus, from our

definition of L, we have the stability criterion

Ri <
1

2
(11.42)

which is in good agreement with our heuristic result (Ri < 1/4) and which has been verified

experimentally. Most texts on reservoir mixing (e.g. Fischer et al. (1979)), however, use the

1/4-threshold to predict the onset of mixing, which is also in agreement with field reservoir

experiments. This difference in criteria (1/4 versus 1/2) arises from the fact that the K-H billows

(which initiate instability) begin to form below the threshold of 1/2, but they break to cause

mixing beginning at the threshold of 1/4.

11.2 Shear flow instability

As a second example of instability analysis, we consider the general shear flow depicted in

Figure 11.5. To stay general, the mathematics become a little more abstract, but we still follow

the same stability analysis procedure.

11.2.1 Governing equation

The first two analysis steps are simple: for a general two-dimensional shear flow the lami-

nar solution is given by u = (U(y), 0, 0), and the perturbed velocity profile by q = (U(y) +

u(x, y), v(x, y), 0).

For the third step, we start by substituting the disturbed profile q into the conservation of

mass and Navier-Stokes equations to obtain the disturbance equations. For mass conservation

we obtain

∂u

∂x
+
∂v

∂y
= 0. (11.43)

Substituting into the momentum equations we obtain
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Basic Flow:

(U(y), 0, 0)

Perturbations:

(u, v, 0)
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Fig. 11.5. General two-dimensional shear flow profile.

∂u

∂t
+ U

∂u

∂x
+ v

∂U

∂y
= −

1

ρ

∂p

∂x
+ ν

(

∂2u

∂x2
+
∂2u

∂y2

)

(11.44)

∂v

∂t
+ U

∂v

∂x
= −

1

ρ

∂p

∂y
+ ν

(

∂2v

∂x2
+
∂2v

∂y2

)

(11.45)

were p is the dynamic pressure of the disturbances and were we have ignored quadratic terms

of the disturbances (linearization). We can remove the dynamic pressure terms by taking the

y-derivative of (11.44) and the x-derivative of (11.45) and subtracting. This gives the single

momentum equation

∂

∂t

(

∂u

∂y
−
∂v

∂x

)

+
∂2U

∂y2
v +

∂U

∂y

(

∂u

∂x
+
∂v

∂y

)

+ U

(

∂2u

∂x∂y
−
∂2v

∂x2

)

= ν

(

∂3u

∂x2∂y
+
∂3u

∂y3
−
∂3v

∂x3
−

∂3v

∂x∂y2

)

. (11.46)

Since this flow is incompressible and two-dimensional, we simplify further by introducing the

stream function, ψ, defined as

u =
∂ψ

∂y
; v = −

∂ψ

∂x

which satisfies mass conservation (11.43) automatically. Substituting ψ into (11.46) gives the

final form of our governing disturbance equation:
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∂

∂t

(

∂2ψ

∂y2
+
∂2ψ

∂x2

)

−
∂2U

∂y2

∂ψ

∂x
+ U

(

∂3ψ

∂x∂y2
+
∂3ψ

∂x3

)

= ν

(

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2

∂4ψ

∂y4

)

. (11.47)

We now define the disturbances in terms of the stream function. Assuming sinusoidal distur-

bances and using separation of variables we have

ψ(x, y, t) = f(y)ei(kx−ωt). (11.48)

Substituting into (11.47) and simplifying we obtain a new equation for f :

(U − c)f ′′ + (k2c− k2U − U ′′)f =
ν

ik
(k4f − 2k2f ′′ + f ′′′′) (11.49)

where c is the phase velocity, defined as c = ω/k, and the prime-notation denotes derivatives

with respect to y. The boundary conditions are that f and its first derivative vanish at the

boundaries. Thus, as we expected, we now have an eigenvalue problem for k and ω (or c).

Before we leave step three, we non-dimensionalize (11.49) to make it more general. The

non-dimensional variables (denoted by superscript ∗)are defined as

U = U0u
∗; c = U0c

∗

f = U0Lf
∗; k = (1/L)k∗

y = Ly∗.

Where U0 and L are characteristic velocity and length scales of the shear flow profile. Substituting

these variables and dropping the superscript notation, the non-dimensional governing equation

becomes

(u− c)(f ′′ − k2f) − u′′f =
1

ikRe
(k4f − 2k2f ′′ + f ′′′′) (11.50)

where Re is the Reynolds number, defined as Re = U0L/ν. (11.50) is the celebrated Orr-

Sommerfeld equation.

11.2.2 Rayleigh’s inflection-point theorem

To derive the classic Rayleigh inflection-point theorem, we consider the inviscid Orr-Sommerfeld

equation:

f ′′ − k2f −
u′′

(u− c)
f = 0 (11.51)

with the boundary condition that f vanishes at the boundary (we can no longer enforce f ′ = 0

at the boundaries since we are neglecting the fourth-order term).

For the flow to be unstable, ω must be complex, thus, c is complex. We then expect f to also

be complex and we can write the following two equations:

f ′′ −

(

k2 +
u′′

(u− c)

)

f = 0 (11.52)

f∗′′ −

(

k2 +
u′′

(u− c∗)

)

f∗ = 0 (11.53)
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where ∗ now indicates the complex conjugate operator. Multiplying the first equation by f∗ and

the second by f and subtracting, we obtain

f ′′f∗ − ff∗′′ =

(

u′′

(u− c)
−

u′′

(u− c∗)

)

f∗f (11.54)

To continue, we must recognize the identity

f ′′f∗ − ff∗′′ = f∗f ′′ + f∗′f ′ − f∗′f ′ − ff∗′′

= (f∗f ′ − f∗′f)′ (11.55)

which lets us write

(f∗f ′ − f∗′f)′ =

(

u′′

(u− c)
−

u′′

(u− c∗)

)

f∗f. (11.56)

We can now integrate (arbitrarily taking the boundaries at ±∞) as follows
∫

∞

−∞

(f∗f ′ − f∗′f)′dy =

∫

∞

−∞

(

u′′

(u− c)
−

u′′

(u− c∗)

)

f∗fdy

f∗f ′ − f∗′f
∣

∣

∞

−∞
=

∫

∞

−∞

(

u′′

(u− c)
−

u′′

(u− c∗)

)

f∗fdy

0 =

∫

∞

−∞

(

u′′

(u− c)
−

u′′

(u− c∗)

)

f∗fdy

0 =

∫

∞

−∞

(

u′′(c− c∗)

|u− c|2

)

|f |2dy.

Note that for a complex function g, we have g∗g = |g|2. We can now substitute c = cr + ici to

obtain
∫

∞

−∞

(

2iciu
′′

|u− c|2

)

|f |2dy = 0. (11.57)

To have instability ci > 0, thus u′′ must change sign somewhere in the domain in order that

(11.57) can equal zero. This observation that for an inviscid shear flow to be unstable, the velocity

profile must have an inflection point (u′′ changing sign) is known as Rayleigh’s inflection-point

theorem. It is a necessary, but not sufficient condition for inviscid shear flow instability.

11.2.3 Physical interpretation of Rayleigh’s Theorem

The physical explanation for Rayleigh’s inflection-point theorem is well presented by Lin (1966).

For a two-dimensional shear flow, the vorticity distribution is given by

ξ(y) = −
dU

dy
(11.58)

thus, when U has an inflection point, d2U/dy2 = 0 and the vorticity has a local maximum.

Consider now a fluid element as it approaches the vorticity maximum. If fluid with lower

vorticity moves up to a region of higher vorticity the net feedback is to force the fluid back

to its original location. Similarly, if fluid of high vorticity moves down into a region of lower

vorticity, the net feedback forces the fluid back to the zone of higher vorticity. Thus, as long as
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the vorticity is monotonically increasing, the vorticity feedback provides stability. On the other

hand, if a fluid packet of lower vorticity moves up to a local zone of maximum vorticity it is

not forced back to its original location. In fact, it is equally at home on the other side of the

vorticity maximum. Thus, mixing and exchange is easier and we may expect instability.

Summary

This chapter introduced the general concept of and analysis techniques for hydrodynamics in-

stability. These methods were then applied to two examples. For the case of a stratified shear

flow, a heuristic approach led to a critical Richardson number as the criteria for instability.

The more detail stability analysis required solution of an Eigenvalue problem and resulted in a

similar Richardson number criteria. The other case considered was a general shear flow without

density stratification. Through derivation of the Rayleigh inflection-point theorem, we showed

that a necessary (though not sufficient) condition for an inviscid shear flow to be unstable is

that it have an inflection point.

Exercises

11.1 Rayleigh-Taylor Instability. Assume that a two-layer density-stratified system is unstably

stratified (ρ1 > ρ2) and is initially stagnant (U0 = 0). First use (11.35) to show that, under our

assumptions, the system must be unstable.

Now include the effects of surface tension. Use (11.36) to show that the system is unstable

for

(ρ2 − ρ1)g >
π2

a2
T. (11.59)

You will need the dispersion relation for the normal modes of linear waves in a two layer system:

(ρ1 + ρ2)ω
2
N =

Nπ

a

[

(ρ1 − ρ2)g + T
N2π2

a2

]

(11.60)

where N is the node number and a is the wave amplitude.

Show that for water overlaying air, a > 9 mm is required for the onset of instability. This

explains why water can be retained in an inverted glass if the mouth of the glass is covered by

a fine-meshed gauze. [Adapted from Acheson (1990)].

11.2 Shear flow mixing layer. Determine the stability characteristics of an unstratified (ρ1 = ρ2)

mixing layer (|U0| > 0). Discuss this situation from both the K-H analysis and Rayleigh’s

inflection-point theorem perspective.

11.3 Groundwater stability. Using the governing equations for incompressible flow through a

porous media:
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∂ui

∂xi
= 0 (11.61)

0 = −
1

ρf

∂p

∂xi
−
ν

κ
ui + gi (11.62)

where ρf is the fluid density and κ is the Darcy conductivity, deduce the stability criteria for a

two-layer stratified shear flow.
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