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Introduction

I 2-Eqn models (k − ε, k − ω) use eddy viscosity hypothesis:

Rij =
2

3
Kδij − 2νtSij (1)

Issues:
I Reynolds stress responds instantaneously to local strain rate
I Anisotropy bij is proportional to Sij (Algebraic dependence)
I Normal componeents of Rij always equal (R11 = R22 = R33)

if Sij has only non-diagonal components (e.g. channel flow)
I Insensitive to rotation rate

I Reynolds Stress Transport (RST) models: Evolve all six
components of Rij

I Use the exact equations to construct the model
I Typically, k and ε equations are solved as well
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Exact RST Equations

DRij
Dt

= −φij − εij + Pij + ν∇2Rij −
∂Γkij
∂xk

φij = 〈ujp,i〉+ 〈uip,j〉 Pressure Redistribution

εij = 2ν
〈
ui,kuj ,k

〉
Dissipation rate

Pij = −RjkUi,k −RikUj,k Production

Γkij = 〈ukuiuj〉 Turbulent Flux

∂Γkij
∂xk

: Turbulent Transport ν∇2Rij : Viscous Transport

Need to model: Pressure Redistribution, Dissipation Rate and
Turbulent Transport
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Reynolds Stresses

Data from DNS at Reτ = 2000 (Jimenez and Hoyas, JFM, 2006)
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Rij is highly anistropic near the wall. R11 is the strongest
component, because P22 = P33 = 0.
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Budget Terms for Turbulent Channel Flow

Data from DNS at Reτ = 2000 (Jimenez and Hoyas, JFM, 2006)
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Pressure redistribution (=pressure strain+pressure transport),
along with Production and Dissipation, is very important
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Reynolds Stresses

But why do we care about normal components, since only R12 is
important in Channel Flow ?
Because normal components can influence budget terms for R12.
Let’s examine P12 if U = U(x2) only:

P12 = −R1kU2,k −R2kU1,k = −R22U1,2 (2)

Thus, production of Reynolds shear stress depends on variance of
wall normal velocity fluctuations, R22. But P22 = 0, so where does
it get energy from ?
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Pressure Redistribution

Note that:

φij = 〈ujp,i〉+ 〈uip,j〉 =

Πij︷ ︸︸ ︷
−〈p(ui,j + uj,i)〉+

∂Tkij
∂xk

where Tkij = δki 〈ujp〉+ δkj 〈uip〉

For incompressible flows, Πii = 0, implying:

φii =
∂Tkii
∂xk

= 2
∂ 〈ukp〉
∂xk

For homogeneous flows, φii = 0; Pressure redistribution does not
provide any net kinetic energy.

For inhomogeneous,
∂Tkij
∂xk

can be neglected, so that φij ≈ Πij

Modeling φij complicated due to non-local nature of pressure.
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Pressure Strain

Π = −〈p(ui,j + uj,i)〉 is known as the ”pressure strain”
Data from DNS at Reτ = 2000 (Jimenez and Hoyas, JFM, 2006)
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Pressure Strain tensor components

Presure strain transfers energy from R11 to R22 and R33

Amitabh Bhattacharya ME724:Reynolds Stress Transport Models



Turbulent Transport

Start with usual gradient diffusion hypothesis:

Tkij = 〈ukuiuj〉 = −Cs
K2

ε

∂ 〈uiuj〉
∂xk

Near the wall 〈u2u2〉 is more important for transport in
wall-normal direction. So a better model is:

〈ukuiuj〉 = −Cs
K

ε
〈ukul〉

∂ 〈uiuj〉
∂xl

Check: Near the wall,
∂T2ij
∂x2

will dominate, for which:

∂ 〈u2uiuj〉
∂x2

= −Cs
K

ε
〈u2u2〉

∂ 〈uiuj〉
∂y

(3)
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Dissipation Rate Tensor

Local isotropy of small scales implies that dissipation rate will be
almost isotropic outside the viscous layer, i.e:

εij = 2ν
〈
ui,kuj ,k

〉
=

2

3
δijε

(Note that ε = ν 〈ui,kui,k〉 = 1
2εii)
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Dissipation Rate Tensor

Data from DNS at Reτ = 2000 (Jimenez and Hoyas, JFM, 2006)
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εij is indeed isotropic, except very close to the wall
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Homogeneous Turbulence

Let’s lump in the anisotropic part of εij into the redistribution:

Φij = −(φij −
1

3
δijφkk + εij −

2

3
εδij)

So that, for homogeneous turbulence

∂Rij
∂t

= Pij + Φij −
2

3
εδij

Note that φkk = 0 for homogeneous turbulence.
We need to representation for Φij :

Φij = Fij(Rij , Ui,j , ε, δij) (4)

But let’s first further understand the nature of pressure
redistribution..
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Pressure Redistribution

Poisson Eqn for pressure fluctuation is:

∇2p =

”Rapid”︷ ︸︸ ︷
−2Ui,juj,i−

”Slow”︷ ︸︸ ︷
(uiuj −Rij),ij

Redistribution term needs to be separated into ”rapid” and ”slow”
terms:

Φij = Φ(r)[Ui,j , Rij , ε, δij ] + Φ
(s)
ij [Rij , ε, δij ]

Also, from dimensional analysis:

Φij = εFij [bij ,
K

ε
, Ui,j , δij ]

where bij =
Rij

K −
2
3δij
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”Slow” Pressure Redistribution

Φij is responsible for transferring energy between components (i.e.
it controls anisotropy), and does not contribute to K
We will therefore try to look at equation for bij :

dbij
dt

=
∂(Rij/K)

∂t
=

1

K

∂Rij
∂t
− Rij
K2

∂K

∂t

=
1

K
[Pij + Φij −

2

3
εδij ]−

Rij
K2

[P − ε]

= −bikUj,k − bjkUi,k −
4

3
Sij −

(
bij +

2

3
δij

)
P

K

+bij
ε

K
+

ε

K
Fij

In the absence of mean velocity gradients:

dbij
dt

= bij
ε

K
+

ε

K
F (s)
ij

[
bij ,

K

ε
, δij

]
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”Slow” Pressure Redistribution

According to experiments, if Ui,j = 0, anisotropic turbulence
”returns” to isotropic state over some time scale, i.e. bij → 0 in
the absence of any velocity gradient.
Rotta’s model:

F (s)
ij = −C1bij

⇒ Φ
(s)
ij = −C1εbij

⇒ dbij
dt

= (1− C1)
bij
T

where T = K/ε. C1 = 1.5→ 2.0 is typically used.
C1 > 0 needed for stable equilibrium.
Nonlinear models (in bij) also possible, but first we need to
understand some tensor representation theory...
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Representation Theory of Tensors

Question: Say we are trying to model a tensor as
φij = Fij [A,B,C...], where Aij , Bij , Cij , .. are also tensors. What
is a tensorially consistent form for Fij [·] ?
Recall, for a vector x, if the coordinate system is represented by
basis ēi instead of ei, where aij = ei · ēj then:

x = ēix̄i = ejxj

⇒ x̄i = ēi · ejxj = ajixi

Vector is a ”first order tensor”, because it has only one subscript
index. For a second order tensor, b:

b = ēkēlb̄kl = eiejbij

⇒ b̄kl = aikajlbij
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Representation Theory of Tensors

Why do we care about tensors ? Because Rij (and therefore bij)
are tensors.
Proof: First note that ui is a tensor, so that ūk = akiui

Rij = 〈uiuj〉
⇒ R̄kl = 〈ūkūl〉 = akialj 〈uiuk〉
⇒ R̄kl = akialjRij
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Representation Theory of Tensors

An Isotropic Cartesian Tensor Function Fij [A,B,C...] has the
property that after a coordinate transformation:

Fij [Ā, B̄, C̄...] = akialjFij [A,B,C...]

Example: Say, Fij [A,B] = AikBkj , then

Fij [Ā, B̄] = ĀikBkj = aliamkaqkasjAlmBqs

= aliδmqasjAlmBqs = aliasjAlqBqs

= aliasjFls[A,B]

Clearly, tensor products A ·B are Isotropic Cartesian Tensor
Functions. Is there a general way to construct such functions ?
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Representation Theory of Tensors

Method to Construct Isotropic Cartesian Tensor Functions:
Take any two vectors a, b. Clearly, aibjFij(A,B, ..) will be :

I A scalar quantity (i.e. does not change with rotation)

I Containing terms linear in a and b (e.g. something like
aibjFij(A) = 1

aibjAij
not possible).

I Containing terms that can depend on A, B..

For example, we can just list all the possible terms in aibjFij(A)..

aibjFij = C1akbk + C2akblAkl + C3akbmAklAlm +

C4akAklAlmAmnbn + ...

Here C1, C2, .. are functions of scalar invariants of A. So, most
general form for Fij will be:

Fij = C1δij + C2Aij + C3AikAkj + C4AikAklAlj + ..
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Representation Theory of Tensors

So, the most general form for F(A) seems to be:

F = C1I + C2A + C3A
2 + C4A

3 + ..

Which can have infinite number of terms ! Thankfully, Cayley
Hamilton Theorem says :

A3
ij = IIIδij − IIAij + IA2

ij

I = λ1 + λ2 + λ3 = Akk

II = −1

2
[A2

kk − I2]

III =
1

3
[A3

kk + III −A2
kkI]

Therefore, most general representation is :

F = C1I + C2A + C3A
2

where Cα = Cα(I, II, III)
Amitabh Bhattacharya ME724:Reynolds Stress Transport Models



Nonlinear Terms In Slow Pressure Strain

More general model for slow pressure strain is

F (s)
ij = C0δij − C1bij + Cn1 b

2
ij

F (s)
ii = 0 implies C0 = −Cn

1
3 b

2
kk Thus:

dbij
dt

= bij
ε

K
+

ε

K
F (s)
ij

[
bij ,

K

ε
, δij

]
= (1− C1)

bij
T

+ Cn1
(b2ij − 1

3b
2
kkδij)

T

”Realizability” is still a major concern, i.e. at all times 〈Rαα〉 > 0
for α = 1, 2, 3
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Realizability for Slow Pressure Strain

We can analyze evolution of bij in the principle coordinate frame,
where diagonal terms of bij are zero.
Let’s look at b11 = R11/K − 2/3. R11 > 0 implies b11 > −2/3
At b11 = −2/3, b33 = −b11 − b22 = 2/3− b22. We can write db11

dt
as:

T
db11

dt
= −2

3
(1− C1) + Cn1 (b222 −

2

3
b22 −

2

9
)

RHS has minimum value of 2
3 [C1 − 1− 2

3C
n
1 ]. For db11

dt > 0 at this
minimum RHS value, we therefore need:

Cn1 <
3

2
(C1 − 1)

Typical values : C1 = 1.7, Cn1 = 1.0
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”Rapid” Pressure Strain

Recall:

φij = 〈ujp,i〉+ 〈uip,j〉

Focusing on the pressure fluctuation due to homogeneous strain
rate Ui,j :

∇2p = −2Uk,lul,k

Solving for p..

p(x) = (∇2)−1 [−2Uk,lul,k]

=
Uk,l
2π

∫
1

|x− x′|
∂ul(x

′)

∂x′k
d3x′

⇒ ∂p(x)

∂xi
=

Uk,l
2π

∫
1

|x− x′|
∂2ul(x

′)

∂x′i∂x
′
k

d3x′

= −Uk,l(∇2)−1[2ul,ki]
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”Rapid” Pressure Strain

After making a change of variable ξi = x′i − xi and some algebra,
we will get:

φ
(r)
ij = −MijklUk,l

whereMijkl = 2(∇2
ξ)
−1
[
Rjl,ik

(
~ξ
)

+Ril,jk

(
~ξ
)]

We can derive the following for Mijkl:

I Contracting j, k, we get Mijjl = 2Ril (Constraint 1)

I φii = 0 implies Miikl = 0 (Constraint 2)

I φij = φji implies Mijkl = Mjikl (Constraint 3)

Also, clearly, Mijkl = Mijkl[δij , bij ] (i.e. does not depend on Ui,j)
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”Rapid” Pressure Strain

An important limiting case is isotropic homogeneous turbulence
undergoing constant shear. In this case, at initial time, |bij | ≈ 0,
and we can approximate Mijkl = Mijkl[δij ].
Most general representation for Mijkl:

Mijkl = Aδijδkl +Bδikδjl + Cδilδjk

Constraint 3 implies B = C, so that:

Mijkl = Aδijδkl +B[δikδjl + δilδjk]

Constraint 2 implies 3A = −2B, and Constraint 1 implies:

Mijjl = [−2

3
B + 4B]δil = 2Ril = 2K

[
bil +

2

3
δil

]
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”Rapid” Pressure Strain

Neglecting bij , we get:

Mijkl =
K

15
[6δikδjl + 6δilδjk − 4δijδkl]

No model constants ! For φ
(r)
ij , we get:

φ
(r)
ij =

2

5
K [Ui,j + Uj,i] (5)

The ”isotropization of production” model (IP model) for φ
(r)
ij

proposes, for large bij :

φ
(r)
ij = −3

5

[
Pij −

2

3
δijP

]
(6)

For bij = 0, eqns (5) and (6) are the same.
Basic idea of IP model: φrij tends to reduce anisotropy in the
production, or it tends to isotropize net production.
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Total Pressure Redistribution

Final model (using only linear term for φ(r)) for total pressure
redistribution is:

Φij = −C1εbij − C2

[
Pij −

2

3
δijP

]
C1 = 1.7, C2 = 3/5

Also known as the Launder-Reece-Rodi Isotropization of
Production (LRR-IP) model.
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Asymptotic State of Anisotropy

Validate LRR-IP model against DNS data by applying simple shear:

∂Ui
∂xj

= Sδi1δj2
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Analytical Solutions for Homogeneous Shear Flows

Find bij(t), starting with isotropic turbulence, bij(0) = 0.
Assumptions:

K(t) = K0 exp(λt), ε(t) = ε0 exp(λt)

Hence, K/ε = K0/ε0 for all time t.
From DNS data: Anisotropy components tend to a constant
value: limt→∞ bij(t) = b∞ij

⇒ lim
t→∞

P

ε
=
−K(t)b∞ij Ui,j

ε0 exp(λt)
= −SK0

ε0
b∞12 =

P∞

ε∞
= constant
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Analytical Solutions for Homogeneous Shear Flows

In the limit t→∞, using the IP model and Rotta model for Φij :

dbij
dt

= 0 =
1

K

[
Pij + Φij −

2

3
εδij

]
− 1

K

[
bij +

2

3
δij

]
[P − ε]

⇒ 0 = Pij − C2

[
Pij −

2

3
δijP

]
− C1εbij −

2

3
δijε−

bij(P − ε)−
2

3
δij(P − ε)

⇒ bij =
1

2
Θ

(
Pij −

2

3
Pδij

)
/P, where Θ =

(1− C2)P/ε

C1 − 1 + P/ε

For this flow, P11 = −R12S = −Kb12S = 2P , P22 = P33 = 0,
implying:

b11 =
2

3
Θ, b22 = b33 = −Θ

3

b12 = −
√

1

6
Θ(1−Θ)
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Analytical Solutions for Homogeneous Shear Flows

For P/ε→∞, Θ→ (1− C2), bij goes to a constant value.
What does K − ε model predict ? For any value of P/ε,
b11 = b22 = b33 = 0.
Also according to 2 eqn models:

b12 = −Cµ(SK/ε)

P

ε
= −R12S = −b12

SK

ε

=
b212

Cµ

⇒ b12 = ±
√
Cµ

P

ε

So, when P
ε →∞, b12 → ±∞, which is incorrect.
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Analytical Solutions for Homogeneous Shear Flows

Experimental results for P/ε = 1.6 (Tavaularis and Karnik, 1989) :
b11 = 0.36± 0.08, b22 = −0.22± 0.05, b33 = −0.14± 0.06,
b12 = −0.32± 0.02
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Modeling the Effects of Inhomogeniety

Dissipation rate εij = 2ν 〈ui,kuj,k〉 is non-zero and anisotropic at
wall. Important to capture its wall asymptotics. Recall, near the
wall:

u1(x, t) = a1(t)y +O(y2), u2(x, t) = a2(t)y2 +O(y3),

u3(x, t) = a3(t)y +O(y2)

Implies, that, near y = 0:

K(y) =
1

2

〈
u2

1 + u2
2 + u2

3

〉
=

1

2

〈
a2

1 + a2
3

〉
y2 +O(y4)

ε(y) =
1

2
εkk = ν

〈
u2

1,2 + u2
2,2 + u2

3,2

〉
= ν

〈
a2

1 + a2
3

〉
+O(y2)
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Modeling the Effects of Inhomogeniety

Also,

Rij =

 〈
a2

1

〉
y2 〈a1a2〉 y3 〈a1a3〉 y2

〈a2a1〉 y3 〈a2a2〉 y4 〈a2a3〉 y3

〈a3a1〉 y2 〈a3a2〉 y3 〈a3a3〉 y2

+ Higher Order Terms

εij = 2ν

 〈
a2

1

〉
2 〈a1a2〉 y 〈a1a3〉

2 〈a2a1〉 y 4
〈
a2

2

〉
y2 2 〈a2a3〉 y

2 〈a3a1〉 2 〈a3a2〉 y
〈
a2

3

〉
+ Higher Order Terms
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Modeling the Effects of Inhomogeniety

Possible to show, that near the wall:

εij
ε

=


Rij

K for i 6= 2, AND j 6= 2

2
Rij

K for i = 2, AND j 6= 2

2
Rij

K for j = 2, AND i 6= 2

4
Rij

K for i = 2, AND j = 2

Rotta (1951) proposed following model for dissipation for
inhomogeneous flows:

εij =
Rij
K
ε

Underestimates ε12 and ε22 by factors of 2 and 4. Goes to
εij = (2/3)δijε in isotropy.
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Modeling the Effects of Inhomogeniety

Redistribution tensor is redefined as:

Φij = −(φij −
1

3
δijφkk + εij −

Rij
K
ε)

Complete RST equation for inhomogeneous flows is then:

DRij
Dt

= Pij + Φij −
Rij
K
ε+ ν

∂2Rij
∂xk∂xk

+
∂

∂xk

[
Cs
K

ε
Rkl

∂Rij
∂xl

]
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Modeling the Effects of Inhomogeniety

Comparison of Φij (redistribution term) from LRR-IP model with
DNS data of channel flow at Reτ = 2000 (Hoyas and Jimenez,
2006)

Redistribution overpredicted near the wall.
In the 1990s Durbin provided an elegant solution to this issue.
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Elliptic Relaxation (Durbin)

Near wall behavior of LRR-IP model is poor. Non-locatlity of
pressure is not accounted for.
Elliptic Relaxation technique attempts to account for non-locality
of pressure.
First, note that, in the presence of a wall at y = 0:

p(x) =
1

2π

∫
1

|x− x′|
Uk,l

∂ul(x
′, z′, |y′|)
∂x′k

d3x′

We can write:

〈uip,j〉 =
1

4π

∫ 〈
ui(x)∂S(x′)/∂x′j

〉
|x− x′|

d3x′

Exact form of S(x) is not very crucial here.
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Elliptic Relaxation

When turbulence is inhomogeneous, we can model the 2-point
correlation in integrand as:〈

ui(x)
∂S(x′)

∂x′j

〉
= Qij(x

′) exp[−|x− x′|/L]

where L is the length scale of the correlation. Thus:

〈uip,j〉 (x) =

∫
Qij(x

′)
exp[−|x− x′|/L]

4π|x− x′|
d3x′ (7)

Turns out that this is the solution to the modified Helmholtz
equation !

∇2 〈uip,j〉 −
〈uip,j〉
L2

= −Qij

For complex geometries, solving for above equation is easier than
carrying out the integral in eqn (7).
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Elliptic Relaxation

Note that, for homogeneous flows,
〈uip,j〉
L2 = Qij . So, Qij is simply

the homogeneous limit of the redistribution tensor.
Denoting the homogeneous model for redistrubution tensor as:

ΦH
ij = −C1εbij − C2

[
Pij −

2

3
δijP

]
C1 = 1.7, C2 = 3/5
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Elliptic Relaxation

Elliptic relaxation then involves solving the following eqn for
fij(x) = Φij(x)/K(x):

L2∇2fij − fij = −
ΦH
ij

K

where L = max

[
cL
K3/2

ε
, c− η

(
ν3

ε

)1/4
]

CL = 0.2, Cη = 80

Φij = fijK is then used to get the final redistribution tensor.
Solving for fij (instead of Φij) ensures that Φij = 0 at the wall.
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Elliptic Relaxation: Boundary Condition

Boundary conditions for fij can be tricky:

fij |y=0 =


−5.0 limy→0 ε

R22
K2 for i = 2, j = 2

0 for (i, j) ∈ {(2, 1), (2, 3), (1, 2), (1, 3)}

−f22
2

∣∣∣∣
y=0

for (i, j) ∈ {(1, 1), (3, 3)}

Let’s show this for f22
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Elliptic Relaxation: Boundary Condition

At the wall, the RST model gives:

ε
R22

K
= Kf22 + ν

∂2R22

∂y2

ε = ν
∂2K

∂y2

Near the wall (i.e. y → 0), K = K0y
2, R22 = R0y

4 and ε is a
constant. So,

ε
R22

K
= ν

∂2K

∂y2

R22

K
= 2νR0y

2

ν
∂2R22

∂y2
= 12νR0y

2 = 6ε
R22

K

Leading to:

f22|y=0 = −5 lim
y→0

ε
R22

K2
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Elliptic Relaxation

Elliptic relaxation appears to bring down the peaks near the wall,
especially for Φ22
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The v2 − f Model (Durbin)

Full RST models with elliptic relaxation can be expensive to
implement and may be numerically unstable. Durbin’s v2 − f
model is a more inexpensive option.
Only the R22 equations are solved like a scalar (along with k − ε
model), with elliptic relaxation. R22 is renamed as ”v2”.

∂
〈
v2
〉

∂t
+ Uj

∂
〈
v2
〉

∂xj
+ ε

〈
v2
〉

K
= kf +

∂

∂xk

[
νT
∂
〈
v2
〉

∂xk

]
+ ν∇2

〈
v2
〉

L2∇2f − f = −c2
P

K
+
c1

T

(〈
v2
〉

K
− 2

3

)
c2 = 0.3, c1 = 0.4

Boundary condition is: f = −5 limy→0

[
ε〈v2〉
K2

]
. νT = Cµ

〈
v2
〉
T is

used as eddy viscosity in mean velocity equation.
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Case Study: Rotating Channel Flow

Non-dimensional Rossby number: Rob = Ω2H/Ub, H = half
channel height
Reference for LES data: Piomelli, Ugo, and Junhui Liu. ”Large
eddy simulation of rotating channel flows using a localized dynamic
model.” Physics of Fluids 7, no. 4 (1995): 839-848.
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Physics of Rotating Channel Flow

Positive Ω implies CCW rotation. Mean velocity eqn is:

0 = −∂P
∂x

+
∂

∂y
(ν
∂U

∂y
−R12)

0 = −∂P
∂y
− 2ΩU − ∂R22

∂y

Coriolis force does not affect mean velocity directly: effect must be
through R12. Net production term in DR12/Dt due to Coriolis
term is:

−R22
dU

dy
− 2Ω(R11 −R22)

Positive Ω reduces net production of R12 if dU
dy is negative, and

vice versa. P = −R12
dU
dy , so TKE production is also reduced as a

result.
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Case Study: Rotating Channel Flow

Model: RST with Elliptic relaxation
Reference: Wizman, V., D. Laurence, M. Kanniche, P. Durbin, and
A. Demuren. ”Modeling near-wall effects in second-moment
closures by elliptic relaxation.” International journal of heat and
fluid flow 17, no. 3 (1996): 255-266.
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Case Study: Rotating Channel Flow

Model: RST with Elliptic relaxation
Reference: Wizman, V., D. Laurence, M. Kanniche, P. Durbin, and
A. Demuren. ”Modeling near-wall effects in second-moment
closures by elliptic relaxation.” International journal of heat and
fluid flow 17, no. 3 (1996): 255-266.

Amitabh Bhattacharya ME724:Reynolds Stress Transport Models



Case Study: Flow over Backward Facing Step

Model: v2 − f
Reference: Durbin, P. A. ”Separated flow computations with the
k-epsilon-v-squared model.” AIAA journal 33.4 (1995): 659-664.
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Case Study: Flow in a Diffuser

Model: v2 − f
Reference: Durbin, P. A. ”Separated flow computations with the
k-epsilon-v-squared model.” AIAA journal 33.4 (1995): 659-664.
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Case Study: Multiple Impinging Jets

Model: modified elliptic relaxation with RST model
Refernce: Thielen, L., K. Hanjali?, H. Jonker, and Remi Manceau.
”Predictions of flow and heat transfer in multiple impinging jets
with an elliptic-blending second-moment closure.” International
Journal of Heat and Mass Transfer 48, no. 8 (2005): 1583-1598.
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Case Study: Multiple Impinging Jets

Amitabh Bhattacharya ME724:Reynolds Stress Transport Models



Case Study: Multiple Impinging Jets
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Case Study: Multiple Impinging Jets
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Numerical Issues

Grid generation issues:

I For low-Re RANS models, make sure that grid point at wall
has width ν/uτ in wall normal direction.

I At the edge of boundary layer, wall normal grid size should be
around δ/20

I Wall-parallel grid size can always be around δ/20

I Use square grid cells in free shear flows, with size δ/20 (here δ
is the width of the shear layer)

I Grid consistency tests can be conducted only for low-Re
RANS models. For these tests, do not reduce the size of
wall-paralel grid cells.

I For wall-modeled RANS, grid consistency tests cannot really
be conducted, especially for the part of the grid near the wall.
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Numerical Issues

Time stepping:

I Make sure you account for viscosity when calculating time
step from CFL: ∆t = CCFL min[∆/U,∆2/ν]. Near the wall,
viscosity will determine time step.

I Better to use a fully implicit scheme for viscosity to get rid of
this issue. Most solvers do not come with this feature.

Numerical discretization:

I Usual CFD discretization (e.g. finite difference, finite volume)
may be used

I Usually upwind schemes can be used for RANS models, since
the model itself may introduce a much larger uncertainty.
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Numerical Issues

Most non-conservative terms will either be production (+) or
dissipation (−) terms.

dk

dt
= ± k

T

Implicit time stepping: production terms can become singular (or
stiff) at larger time steps

kn+1 =
kn

1±∆t/T

Explicit time stepping: dissipation terms can introduce negative
factor for large time steps

kn+1 = kn(1∓∆t/T )
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Numerical Issues

Rule of thumb: make dissipative terms implicit, production terms
explicit. For example,

dk

dt
= P − ε

can be discretized as:

kn+1 = kn + ∆t

(
Pn − εn

kn
kn+1

)
How do OpenFOAM/Ansys carry out the time stepping ? You
should always check.
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Numerical Issues

RST models are known to be numerically unstable. Reynolds stress
components are coupled to each other.
For mean velocity equation, Reynolds stress appears as a body
force (instead of an eddy diffusivity). One way to increase stability
for U equation is to add and subtract diffusive terms:

∂Ui
∂t

+ Uj
∂Uj
∂xj
− ∂

∂xj
[2νTSij ]

(n+1) = − ∂P
∂xi

+ ν∇2Ui

− ∂

∂xj
R

(n)
ij −

∂

∂xj
[2νTSij ]

n
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Numerical Issues

Boundary conditions for f , ε, ω can be stiff. They can be made
less stiff by making the bc implicit. For example, at wall:

ε(n)|y=0 = ν
∂2K

∂y2
= 2ν lim

y→0

K(n)(y)

y2

y = y1 (y location of first off-wall grid point) is usually taken
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