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Objectives

I Dynamics of the Spectrum Tensor

I Derivation of equation for two-point correlation
Rij(r) = 〈ui(x)uj(x + r)〉 in homogeneous isotropic
turbulence

I Relationship between the spectral energy transfer term and
third order structure function

I Kolmogorov’s 4/5ths law
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Fourier Transforms (Greenberg, 17.10)

We have seen the Discrete Fourier Transform for a function defined
over a periodic box 0 ≤ x ≤ L:

f(x) =

∞∑
n=−∞

f̂n exp[iknx], kn = 2πn/L (1)

f̂n =
1

L

∫ L

0
f(x) exp[−iknx]dx; n ∈ {0,±1,±2,±3...}

In the limit of L→∞, ∆k = 2π/L→ 0, and summation in eqn
(1) can be converted to integral Fourier Transform (FT) and
Inverse Fourier Transform (IFT):

IFT : F−1[f̂ ](x) = f(x) =
1

2π

∫ ∞
−∞

f̂(k) exp[ikx]dx (2)

FT : F [f ](k) = f̂(k) =

∫ ∞
−∞

f(x) exp[−ikx]dx (3)
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Properties of Fourier Transforms (Greenberg, 17.10)

I Transform of Derivative: F [dnf/dnx](k) = (ik)nf̂(k)

I Transform of Integral: F [
∫ x
−∞ f(ξ)dξ](k) = 1

ik f̂(k)

I Convolution theorem:

Define Convolution : (f ? g)(x) =

∫ ∞
−∞

f(x− ξ)g(ξ)dξ

F [(f ? g)](k) = f̂(k)ĝ(k)

I Some common FT pairs:

F [δ(x− a)](k) = exp[−ika]

F [H(x)](k) = (iω)−1

F [exp(−x2)](k) =
√
π exp[−k2/4]

F [f(ax)](k) =
1

a
f̂(k/a)
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Fourier Transforms

FT methods are useful for solving PDEs, since they convert PDEs
into ODEs
Example: Solving 1D diffusion eqn:

∂u

∂t
= α2∂

2u

∂x2
(−∞ < x <∞, 0 < t <∞)

IC : u(x, 0) = f(x)

After FT in x, we get the following ODE problem:

dû

dt
+ α2k2û(k) = 0

û(k, 0) = f̂(k)

Solution of this ODE is:

û(k, t) = f̂(k) exp[−α2k2t]
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Fourier Transforms

Noting that F−1[exp(−α2k2t)](x) = 1
2α
√
πt

exp[−x2/(4α2t)] and

using convolution theorem:

u(x, t) =
1

2α
√
πt

∫ ∞
−∞

f(ξ) exp

[
−(x− ξ)2

4α2t

]
dξ
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Velocity Spectrum Function/Tensor

Let’s consider a statistically homogeneous 1D velocity field u(x).
Two point correlaton is:

Ruu(r) = 〈u(x)u(x+ r)〉

”Velocity Spectrum” function φuu(k) is simply the FT of Ruu(r):

φuu(k) = F [Ruu(x)](k) =
1

2π

∫ ∞
−∞

Ruu(r) exp[−ikr]dr

⇒ Ruu(r) =

∫ ∞
−∞

φuu(k) exp[ikr]dr
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Velocity Spectrum Function

Velocity spectrum tensor φij(k) is:

φij(k) =
1

2π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Rij(r) exp[−ik · r]dr1dr2dr3

where Rij(r) = 〈ui(x)uj(x + r)〉 By definition:

〈uu〉 =

∫ ∞
−∞

φuu(k)dk

Rij(0) =

∫
φij(k)d3k
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Structure Function versus Velocity Spectrum

Say φuu(k) = C|k|−n, then

Ruu(k) = C

∫ ∞
−∞
|k|−n exp[ikx]dk

which does not converge (limk→0 |k|−n =∞)
Let’s consider the second order structure function instead:

S2(r) =
〈
[u(x+ r)− u(x)]2

〉
= 2

〈
u2
〉
− 2 〈u(x)u(x+ r)〉

= 2

∫ ∞
−∞

[1− exp(ikr)]φuu(k)dk

= C

∫ ∞
−∞

[1− exp(ikr)]|k|−ndk

= 2Crn−1
∫ ∞
−∞

[1− exp(iα)]|α|−ndα

Which converges, if 1 < n < 3. n = 5/3 implies n− 1 = 2/3:
Basis for connection between 5/3rds law and 2/3rds law
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2-point Correlation Tensor (Isotropic Turbulence)

Under Isotropy, Rij(r) can be completely represented as:

Rij(r) = A(r)rirj +B(r)δij

For longitudinal and transverse correlations:

f(r) =
Rαα(reα)

Rαα(0)
=
A(r)r2 +B(r)

〈u2α〉
(4)

g(r) =
Rββ(reα)

Rββ(0)
=
B(r)

〈u2α〉
β 6= α (5)

Relating A(r), B(r) to f(r), g(r)..

Rij(r) =

[
(f(r)− g(r))

r2
rirj + g(r)δij

] 〈
u2
〉
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2-point Correlation Tensor (Isotropic Turbulence)

Next, note that:

∂ 〈ui(x)uj(x
′)〉

∂x′j
= 0

Use r = x′ − x, and chain rule, to obtain:

∂

∂x′j

∣∣∣∣
x

=
∂

∂rj
⇒ ∂Rij(r)

∂rj
= 0

It can be similarly shown that
∂Rij(r)
∂ri

= 0. Applying this continuity
constraint, we get:

g(r) = f(r) +
1

2
rf ′(r)

So, f(r) is enough to define Rij(r)
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2-point Correlation Tensor (Isotropic Turbulence)

Several length scales can be derived from Rij(r). Integral length
scale:

L =

∫ ∞
0

R11(e1r)

R11(0)
dr =

∫ ∞
0

f(r)dr

Taylor micro-scale (easier to measure experimentally):

λ =

[
− 1

f ′′(0)

]1/2
Reynolds number based on Taylor number is often used:

Reλ = K1/2λ/ν. Possible to show that Reλ ∝ Re
1/2
T .
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2-point Correlation Tensor (Isotropic Turbulence)

Taylor micro-scale:
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Equation for 2-point Correlation

I Assume no mean velocity field is present

I Let’s start with the equation for fluctuating velocity ui(x):

∂ui
∂t

+
∂uiuk
∂xk

= − ∂p

∂xi
+ ν

∂2ui
∂xk∂xk

(6)

∂ui
∂xi

= 0 (7)

I Also consider equation for velocity u′i(x
′) at x′ = x + r:

∂u′i
∂t

+
∂u′iu

′
k

∂x′k
= − ∂p

′

∂x′i
+ ν

∂2u′i
∂x′k∂x

′
k

(8)

∂u′i
∂x′i

= 0 (9)
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Equation for 2-point Correlation

Let’s first derive an equation for
〈
ui(x)u′j(x

′)
〉

:

I Taking average of ui ×
[
∂u′j
∂t + ...

]
+ u′j ×

[
∂ui
∂t + ...

]
, we get:

∂
〈
uiu
′
j

〉
∂t

+
∂
〈
u′juiuk

〉
∂xk

+
∂
〈
uiu
′
ju
′
k

〉
∂x′k

= −
∂
〈
u′jp
〉

∂xi
−∂ 〈ujp

′〉
∂x′i

+ ν

∂2
〈
uiu
′
j

〉
∂xk∂xk

+
∂2
〈
uiu
′
j

〉
∂x′k∂x

′
k


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Governing Equation for 2-Point Velocity Correlation
Homogenous Correlations

I In homogeneous turbulence, statistical quantities have the
form f(x,x′) = F (r), where r = x′ − x

I From chain rule:

∂

∂xi
=
∂rk
∂xi

∂

∂rk
= −δki

∂

∂rk
= − ∂

∂ri
(10)

∂

∂x′i
=
∂rk
∂x′i

∂

∂rk
= δki

∂

∂rk
=

∂

∂ri
(11)

I Three correlations involved:
I 2 point 3rd order velocity correlation: Rij(r) =

〈
uiu

′
j

〉
I 2 point 3rd order velocity correlation: Sikj(r) =

〈
u′juiuk

〉
I 2 point pressure-velocity correlation: Rpi(r) = 〈u′ip〉
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Governing Equation for 2-Point Velocity Correlation
Homogeneous Isotropic Turbulence

I Isotropy implies:

Rip(r) = 0 (12)

Sikj(r) = A(r)[δikrj + δjkri] +B(r)δijrk (13)

I Equation for two-point correlation (under
isotropy+homogeniety conditions):

∂Rij(r, t)

∂t
=

Tij(r)︷ ︸︸ ︷
∂Sikj
∂rk

(r) +
∂Sjki
∂rk

(−r) +2ν
∂2Rij(r)

∂rk∂rk
∂Rij
∂ri

=
∂Rij
∂rj

= 0 (14)
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Limit of zero separation

I Due to incompressibility, it can be shown that
limr→0 Tij(r) = 0

I Also, Rii(0) = 2K = 〈uiui〉, implying

∂K

∂t
= ν

∂2Rii
∂rk∂rk

∣∣∣
r=0

(15)

I Comparing with the kinetic energy equation (dKdt = −ε)
derived earlier, we can say:

ν
∂2Rii
∂rk∂rk

∣∣∣
r=0

= −ε (16)

I Using isotropy, and d2R11(re1)
dr2

= −〈u
2〉
λ2

it can be shown that:

ε = −15ν

〈
u2
〉

λ2
(17)
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Kolmogorov’s 4/5th Law

The 2nd and 3rd order logitudinal structure function are given as:

S2
L(r) =

〈
(u1(x + re1)− u1(x))2

〉
(18)

S3
L(r) =

〈
(u1(x + re1)− u1(x))3

〉
(19)

From equation for 2-point correlation, it is possible to write:

3

r4

∫ r

0
s4
∂S2

L(s, t)

∂t
ds = 6ν

∂S2
L

∂r
− S3

L −
4

5
εr (20)

In the inertial subrange, under steady state conditions,

S3
L(r) = −4

5
εr (21)

This is one of the few exact analytical results in turbulence.
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Isotropic Velocity Spectrum Tensor

Representation for φij(k) in isotropic flows is:

φij(k) = A(k)kikj +B(k)δij
∂Rij
∂rj

= 0⇒ ikjφij = 0

⇒ ikj [A(k)kikj +B(k)δij ] = 0

⇒ A(k)k2 +B(k) = 0⇒ φij(k) = A(k)[kikj − k2δij ]
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Isotropic Velocity Spectrum Tensor

Now let’s use:

1

2
Rkk(0) = K =

∫ ∞
0

E(k)dk =
1

2

∫
φkk(k)d3k

But∫
φkk(k)d3k =

∫
−2k2A(k)d3k =

∫ ∞
0
−2k2A(k)(4πk2)dk

or, A(k) = − 1
4πk4

E(k), and therefore..

φij(k) =
E(k)

4πk4
[
k2δij − kikj

]
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The ”One Dimensional” Energy Spectrum

Typical experimental probes only measure just one velocity
component in time. If the mean streamwise flow is U , and the
turbulence is assumed to be ”frozen” while passing through the
probe then ”Taylor’s hypothesis” states:

〈u(t)u(t+ ∆t)〉 = R11(∆tUe1)

How can we get the energy spectra E(k) from the longitudinal
2-point correlation ? Start with the 1D energy spectrum E11(k1):

Eij(k1) = F [Rij(re1)](k1)

But Rij(re1) =
∫
φij(k

′) exp[ik′1r]d
3k′, so that:

Eij(k1) =
1

2π

∞∫
−∞

[∫
φij(k

′) exp(ik′1r) exp(−ik1r)dk′1dk′2dk′3
]
dr
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The ”One Dimensional” Energy Spectrum

Use δ(k1 − k′1) = 1
2π

∞∫
−∞

exp[−i(k1 − k′1)]dr to get:

Eij(k1) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

φij(k
′)δ(k1 − k′1)dk′1dk′2dk′3

=

∞∫
−∞

∞∫
−∞

E(k)

4πk4
(k2δij − kikj)dk2dk3

Specifically:

E11(k1) =

∞∫
−∞

∞∫
−∞

E(k)

4πk4
(k2 − k21)dk2dk3
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The ”One Dimensional” Energy Spectrum

Transforming variables to k2 = kr cos θ and k3 = kr sin θ, we get:

E11(k1) =

∞∫
k1

E(k)

2k

[
1− k21

k2

]
dk
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The ”One Dimensional” Energy Spectrum

Taking derivatives:

E(k1) = k31
d

dk1

(
1

k1

dE11

dk1

)
Clearly, E(k) ∝ ε2/3k−5/3 implies E(k1) ∝ ε2/3k−5/31 . Also,

φij ∝
E(k)

k2
∼ ε2/3k−11/3
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The ”One Dimensional” Energy Spectrum
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Energy Transfer Via Triad Interactions

In a periodic box, 3D velocity field given by:

u(x, t) =
∑
k

û(k, t) exp[ik · x]

In wave-space, the NS equations are:

(
d

dt
+ νk2

)
ûi = −iklPjk(k)

∑
k′,k′′

δk,k′+k′′ ûk(k
′, t)ûl(k

′′, t)︸ ︷︷ ︸
Triad Interactions

+

f̂i(k, t)︸ ︷︷ ︸
Large Scale Forcing

Pjk(k) = δjk −
kjkk
k2

ikkf̂k = 0 (to ensure continuity)
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Energy Transfer Via Triad Interactions

We can write down the equation for Ê(k, t) = 1
2 〈ûkû

∗
k(k, t)〉 as:

dÊ

dt
= Real[f̂ku

∗
k(k, t)] + T̂ (k, t)− 2νk2Ê(k, t) (22)

T̂ (k, t) = klPjkReal

[
i
∑
k′

〈
ûj(k)û∗k(k

′)û∗l (k− k′)
〉]

(23)

Possible to show that
∑

k T̂ (k, t) = 0. Thus, T̂ (k, t) does not
add/subtract any energy globally. It only causes transfer of energy
between scales.
Let’s perform similar analysis via Fourier Transform
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Evolution of Velocity Spectrum Tensor

I Obtain equation for velocity spectrum tensor by Fourier
transforming two-point correlation tensor equation

I Remember that:

φij(k) =
1

2π3

∫
Rij(r) exp[−ik · r]dr (24)

Γij(k) =
1

2π3

∫
Tij(r) exp[−ik · r]dr (25)

−k2φij(k) =
1

2π3

∫
∂2Rij(r)

∂rk∂rk
exp[−ik · r]dr (26)

where k2 = kiki

I Let’s also account for an average production, Pij(k), coming
from a forcing term. This term is zero for k lying within
inertial range and dissipative range.
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Evolution of Velocity Spectrum Tensor

I Therefore:

∂φij
∂t

= Pij + Γij − 2νk2φij (27)

I Recalling that, for isotropic turbulence,
φii(k) = E(k)/(2πk2), we get

∂E(k)

∂t
= P (k) + T (k)− 2νk2E(k) (28)

where
I P (k) = 2πk2Pii(k) is the production. P (k) > 0 can be

assumed.
I T (k) = 2πk2Γii(k) can be seen as the energy input into the

local k scale from the other scales.
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Evolution of Energy Spectrum Tensor

I Integrating over k from 0 to ∞, and observing that
TKE = K =

∫∞
0 E(k)dk,

Net Production = P =
∫∞
0 P (k)dk,∫

Γii(k)dk = Tii(0) = 0, we get:

dK

dt
= P − 2ν

∫ ∞
0

k2E(k)dk (29)

⇒ ε = 2ν

∫ ∞
0

k2E(k)dk =

∫ ∞
0

D(k)dk (30)

where D(k) = 2νk2E(k) is the dissipation spectra
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Some observations

I The net contribution of T (k) to kinetic energy is zero:∫∞
0 T (k)dk (i.e. it just transports energy from one scale to

another).

I If E(k) ∼ k−n and 0 < n < 2, then, for k1 � k2, we have

E(k1)� E(k2) (31)

D(k1)� D(k2) (32)

Consistent with our assertion that dissipation occurs in the
small scales.
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Some observations

I For statistically stationary turbulence,
∂E(k)
∂t = 0 = P (k) + T (k)−D(k)

I P (k), D(k) is small in inertial range
I And, therefore, so is T (k)
I In inertial scales, whatever energy that gets received from the

large scales is passed on to the smaller scales

I T (k) = −P (k) < 0 for very small k (integral scales) and
T (k) = D(k) > 0 for very large k (dissipative scales)

I Energy needs to cascade from large to small scales

Amitabh Bhattacharya Dynamics of Two-Point Correlation and Energy Spectra



Energy transfer spectrum

I Now let’s integrate the energy spectrum equation:

∂
∫ k
0 E(k′)dk′

∂t
=

∫ k

0
P (k′)dk′ +

∫ k

0
T (k′)dk′

−2ν

∫ k

0
k′2E(k′)dk′ (33)

I Clearly, Π(k) = −
∫ k
0 T (k′)dk′ is the net transfer of energy

from all scales with wavenumber less than k to all scales with
wavenumber more than k.

I Π(k) is called the ”transfer” spectrum.
I For k in inertial range,

I
∫ k

0
P (k′)dk′ = P = ε

I and therefore Π(k) = ε
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Energy transfer spectrum
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