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Turbulent Boundary Layers (TBL)

Text: ”Boundary Layer Theory”, Schlichting and Gersten

I y: Wall normal direction

I δ(x): Boundary layer
thickness

I l : Characteristic length
scale

I U∞(x), P∞(x): Free stream
velocity

I U , V change with both x, y

I Outside BL:
U∞

∂U∞
∂x = −∂P∞

∂x (From
Bernoulli’s Equation)
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Types of BL thickness

I General notation: δ(x)

I Displacement thickness:

δ∗ =
1

U∞

∫ δ

0
(U∞ − U)dy (1)

I Momentum thickness:

θ =
1

U2
∞

∫ δ

0
U(U∞ − U)dy (2)

Shape factor: H = δ∗/θ. H ≈ 1.3 for turbulent flows, H ≈ 2.5 for
laminar flows.
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δ∗ vs δ

Rewrite expession for δ∗ as:

δ∗U∞
uτ

=
1

uτ

∫ δ

0
(U∞ − U)dy (3)

In the outer region, deficit law implies:

U∞ − U = uτF (η) (4)

where η = y/δ. Thus:

δ∗U∞
uτ

∝ δ (5)

Amitabh Bhattacharya ME724:Turbulent Boundary Layers



Exact TBL Equations

I Assumptions: Re→∞, V � U , ∂
∂x �

∂
∂y , Rij(x, δ) = 0

I V momentum eqn:

0 = −∂P
∂y
− ∂R22

∂y
(6)

⇒ P (x, y)− P∞(x) = −R22(x, y) +R22(x,∞) (7)

⇒ ∂P

∂x
=

∂P∞
∂x
− ∂R22

∂x
(8)

I Since ∂R22
∂x �

∂R12
∂y ...

∂U

∂x
+
∂V

∂y
= 0 (9)

U
∂U

∂x
+ V

∂U

∂y
= −∂P∞

∂x
+ ν

∂2U

∂y2
− ∂R12

∂y
(10)
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Momentum Integral Equation

After some manipulation, momentum equation can be written as:

∂U(U − U∞)

∂x
+
∂V (U − U∞)

∂y
(11)

+(U − U∞)
∂U∞
∂x

=
∂

∂y

[
ν
∂U

∂y
−R12

]
(12)

Integrating from 0→∞ in y, we get momentum integral equation:

1

u2τ

dU2
∞θ

dx
+
U∞δ

∗

u2τ

dU∞
dx

= 1 (13)
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Self-similarity

In general, for nonzero pressure gradient, we cannot expect a
self-similar solution (dP∞dx introduces extra parameter).

Self-similarity only possible if imposed dP∞
dx is such that convective

and Reynolds stress terms balance each other.

U
∂U∞ − U

∂x
∼ U∞

uτ
L

(14)

∂R12

∂y
∼ u2τ

δ
(15)

So, self-similarity possible only if u2τ
δ ∼ U∞

uτ
L , or if U∞δ

Luτ
is a

constant. Using previous relationships, we can alternately get the
condition:

δ∗

τw

dP

dx
= constant (16)
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Equilibrium Boundary Layers

We can try and seek self-similar solution for the outer region
(deficit law):

U+(x, y)− U+
∞(x) = F (η) (17)

R+
12 = G(η) (18)

where η = y/δ. Self-similarity possible, if δ∗

τw
dP
dx = β=constant.

−2βF − (1 + 2β)η
dF

dη
=

dG

dη
(19)

Boundary conditions:

F → 0, G→ 0 for η →∞,
G→ 1 for η → 0,
ηF ′ = 1

κ for η → 0
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Equilibrium Boundary Layers

Clauser and Cole studied equilibrium TBL experimentally, and
found the following relationship emiprically:

U+
∞(x)− U+(y) = −1

κ
log η +

Π(β)

κ
[2− w(η)]

where w(η) = 2 sin2
[π

2
η
]

Π(β) = 0.8(β + 0.5)3/4 β =
δ∗

τw

dP

dx

Adverse pressure gradient (dP∞dx > 0) leads to higher deficit.
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Equilibrium Boundary Layers

Amitabh Bhattacharya ME724:Turbulent Boundary Layers



Equilibrium Boundary Layers

To find Cf (x), start with deficit law in the limit η → 0:

U+
∞(x)− U+(x, y) = −1

κ
log η +

2

κ
Π(β) (20)

(21)

along with the ”law of the wall” for the inner region:

U+(x, y) =
1

κ
log y+ +Bi (22)

Adding the two in the matching region (η → 0, y+ →∞):

U+
∞(x) =

1

κ
log

(
Reδ(x)

U+
∞

)
+Bi +

2

κ
Π(β) (23)

Using which we can solve for Cf (x) = 2
(U+
∞)2

.

Amitabh Bhattacharya ME724:Turbulent Boundary Layers



Zero Pressure Gradient TBL

For zero pressure gradient, U∞(x) does not change with x.
Momentum integral Eqn is:

1

u2τ

dU2
∞θ

dx
= 1 (24)

⇒ dθ

dx
=

u2τ
U2
∞

=
Cf
2

(25)

To solve this, we will try to make this into an ODE for δ(x). For
skin friction:

Cf = 0.0205Re
−1/6
δ (26)

Amitabh Bhattacharya ME724:Turbulent Boundary Layers



Zero Pressure Gradient TBL

To obtain momentum thickness θ(x) in terms of δ(x), use the well
known approximation:

U(x, y)

U∞(x)
= η1/7 (27)

Does not give correct form of deficit law, but valid over large range
of Re (we can instead use Coles and Clauser’s wake parameter, but
it will be cumbersome to integrate). Momentum thickness is:

θ(x) =
1

U2
∞

∫ δ

0
U(U∞ − U)dy = δ

∫ 1

0
η1/7(1− η1/7)dη =

7

72
δ(x)
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Zero Pressure Gradient TBL

Momentum integral equation becomes:

7

72

dδ

dx
= 0.01025Re

−1/6
δ (28)

7

72
δ1/6dδ = 0.01025

(
ν

U∞

)1/6

dx (29)

⇒ δ

x
= 0.166Re−1/7x or Reδ = 0.166Re6/7x (30)

Thus, BL grows like:

δ ∝ x6/7 (31)

and

Cf (x) = 2
dθ

dx
= 0.0277Re−1/7x (32)
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Zero Pressure Gradient TBL

Coefficient of drag of a plate of length L is:

CD(L) =
1

L

∫ L

0
Cf (x)dx = 0.032Re

−1/7
L (33)
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Examples

Relative importance of Viscous Drag Significant proportion of
drag on an airplane comes from the fuselage. Say we approximate
the fusealage as a cylinder with radius R and length L, with it’s
axis parallel to the flow. We can assume coefficient of form drag,
Cp to be a constant (say Cp ∼ 0.1).
Ratio of viscous to form drag force is then (assuming the fuselage
surface is like a flat plate):

CD(L)2πRL

CpπR2
=

2LCD(L)

CpR
=

2L

R

0.032Re
−1/7
L

0.1
(34)

Typical airliner (Beoing/Airbus) will have L/R ∼ 10, L = 100
meters, R = 10m, cruising speed of the plane is around 100m/s,
and kinematic viscosity of air is ν = 10−5m2/s, implying
ReL ∼ 109. Thus, the fractional important of viscous drag is
∼ 0.34; most of the drag on an airplane is therefore from form
drag.
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Examples

Relative importance of Viscous Drag Let’s repeat the
calculation for a truck: U∞ = 20m/s, L = 10m, R = 2m,
⇒ ReL ∼ 2× 107,

CD(L)2πRL

CpπR2
=

2LCD(L)

CpR
= 10× 0.032(2× 107)−1/7

0.1
= 2.89

Visocus drag is more important at lower Reynolds number (due to

the Re
−1/7
L dependence)
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Examples

Thickness of TBL At the end of the fuselage, δ(L) will be given
by:

δ

L
= 0.166Re

−1/7
L (35)

⇒ δ(L) = L× 0.166× 10−9/7 = 0.83m (36)

Let’s repeat the calculation for an automobile: U∞ = 20m/s,
L = 4m, ⇒ ReL ∼ 107,

δ(L) = 4× 0.166× 10−1 = 0.07m (37)
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