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» Dynamics of the Spectrum Tensor

» Derivation of equation for two-point correlation
R;j(r) = (u;(x)u;(x + 1)) in homogeneous isotropic
turbulence

» Relationship between the spectral energy transfer term and
third order structure function

» Kolmogorov's 4/5ths law
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Fourier Transforms (Greenberg, 17.10)

We have seen the Discrete Fourier Transform for a function defined
over a periodic box 0 < x < L:

fl@) = Y faoexpliknal, kn=2mn/L (1)
g .
fn = L/o f(z) exp[—ikpx]dz; n € {0,£1,4+2,+3...}

In the limit of L — oo, Ak = 27w/L — 0, and summation in eqn
(1) can be converted to integral Fourier Transform (FT) and
Inverse Fourier Transform (IFT):

IFT: FUf@) = f) = o / Zﬂmexpwkm]dx )

FT: FIf(K) = (k) = /_°° f(2) expl—ikaldz  (3)
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Properties of Fourier Transforms (Greenberg, 17.10)

» Transform of Derivative: F[d"f/d"](k) = (ik)"f (k)
» Transform of Integral: F[[*_ f(§)d¢](k) = if(k)

» Convolution theorem:

Define Convolution : (f * g)(z) = / flz—&)g(&)dE
FIfglk) = Fk)g(k)

» Some common FT pairs:
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Fourier Transforms

FT methods are useful for solving PDEs, since they convert PDEs
into ODEs
Example: Solving 1D diffusion eqn:

Ou 2O (—00 <z < 00,0 <t < 00)
- = O —= —0o0 x (0.¢] o
ot 2 ’

IC :u(z,0) = f(x)
After FT in x, we get the following ODE problem:
% +a?k*a(k) = 0
a(k,0) = f(k)
Solution of this ODE is:
a(k,t) = f(k)exp[—a®k?t]
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Fourier Transforms

Noting that F~![exp(—a?k?t)]|(z) = 2a\1/ﬁ exp[—22/(4a*t)] and
using convolution theorem:

) = g o5
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Velocity Spectrum Function/Tensor

Let's consider a statistically homogeneous 1D velocity field u(x).
Two point correlaton is:

Ruu(r) = (u(@)u(z +r1))

"Velocity Spectrum” function ¢y, (k) is simply the FT of Ry, (r):
1 o
bunk) = FlRun@)() / R () exp|—ikr]dr

:% .

= Run(r) = /_ " buall) explikr]dr
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Velocity Spectrum Function

Velocity spectrum tensor ¢;;(k) is:

pij(k) = 2713///RU r) exp[—ik - r|dridraodrs

—00 —00 —O0

where R;;(r) = (u;j(x)uj(x 4+ r)) By definition:
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Structure Function versus Velocity Spectrum

Say ¢uu(k) = Clk|™", then
Ruu(k) = C / e " explika] i

which does not converge (limy_,q |k|™" = o0)
Let's consider the second order structure function instead:

Sa(r) = ([u(@+r)— ]>—2<u> Yu(z + 7))
~ 9 / (1 — exp(ikr)] duu (k) dk

[e.9]

e / 11— explikr)] |k dk

= 2C’1“"_1/ [1 —exp(icr)]|ar| " dex
Which converges, if 1 <n < 3. n=15/3 impliesn —1=2/3:
Basis for connection between 5/3rds law and 2/3rds law
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2-point Correlation Tensor (Isotropic Turbulence)

Under Isotropy, R;;(r) can be completely represented as:
Rij(r) = A(T‘)Tﬂ‘j + B(r)éij
For longitudinal and transverse correlations:

req T 7“2 T
LCIE i

_ Rpp(res) — B(r)
g(r) = R0 (u2) B#a (5)

Relating A(r), B(r) to f(r), g(r)..

Rij(r) = MTW +9(r)is | (u?)

r2

Amitabh Bhattacharya Dynamics of Two-Point Correlation and Energy Spectra



2-point Correlation Tensor (Isotropic Turbulence)

Next, note that:

9 (ui(x)u;(x'))
(9x;-
Use r = X' — x, and chain rule, to obtain:
0 _ 0 aRij(I')
Ox; < - or; = or;

=0

It can be similarly shown that 6R8i77];(1~)

constraint, we get:

= 0. Applying this continuity

1
o) = 1)+ 5rr()
So, f(r) is enough to define R;;(r)



2-point Correlation Tensor (Isotropic Turbulence)

Several length scales can be derived from R;;(r). Integral length

scale:
> Rii( elr /
L =
0 R11 Jr

Taylor micro-scale (easier to measure experimentally):

- [l

Reynolds number based on Taylor number is often used:

Rey = K'/2)\/v. Possible to show that Rey o RelT/2.
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2-point Correlation Tensor (Isotropic Turbulence)

Taylor micro-scale:

i

pn! : r

Fig. 6.7. A sketch of the longitudinal velocity lation function showing the
definition of the Taylor microscale A,
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Equation for 2-point Correlation

» Assume no mean velocity field is present

» Let's start with the equation for fluctuating velocity u;(x):

Ou;  Oujup Op 9%u;
ot " 0w T owm Y orrom (6)
8’[1,1'

» Also consider equation for velocity u}(x") at x' =x +r:

ouy  Oujuy, op 0%

o o, — oo Vodod, ®
ou!;
5 = U (9)

i
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Equation for 2-point Correlation

Let's first derive an equation for <ul(x)u;(x’)>

_ o, .
» Taking average of u; X [ ;ﬂ ] +u3 X [a(;;’ + ] we get:

0 <uzu;> 0 <u;uzuk> 0 <u2u;u§€> 0 <u3p> 8 (u;p')

ot + oxy, + o), - or; o,
N 0?2 <uzu3> . 9?2 <u1u;>
v
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Governing Equation for 2-Point Velocity Correlation

Homogenous Correlations

> In homogeneous turbulence, statistical quantities have the
form f(x,x’) = F(r), wherer = x' — x

» From chain rule:

0 or, 0 0 0
8$Z’ axz 8Tk k 8rk 87‘2' ( 0)
0 Or, 0O 0 0
- 5 7 5 = 11
oz, Ox Ory, ki ory, or; (11)

> Three correlations involved:
> 2 point 3rd order velocity correlation: Ry;(r) = (usu)
» 2 point 3rd order velocity correlation: Sy, (r)
» 2 point pressure-velocity correlation: R,;(r) =
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Governing Equation for 2-Point Velocity Correlation

Homogeneous Isotropic Turbulence

> Isotropy implies:

Sikj(x) = A(r)[dur; + djpri] + B(r)oyre  (13)

» Equation for two-point correlation (under
isotropy+homogeniety conditions):

T,]A(r)
8Rij (I‘, t) . 8Sikj 8531.“ 82Rij (I')
o = o Ot O
8R¢j N 8R” i
8” N 87“]' =0 (14)
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Limit of zero separation

» Due to incompressibility, it can be shown that
» Also, R;;(0) = 2K = (u;u;), implying

0K 0?Ry;
— = 15
ot ¥ Ordry lr=o (15)
» Comparing with the kinetic energy equation (%{ = —¢)
derived earlier, we can say:
& Ri;
=— 16
V@rkark r=0 ¢ ( )
2
» Using isotropy, and % = —% it can be shown that:
2
u
€= —151/<)\2> (17)
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Kolmogorov's 4/5th Law

The 2nd and 3rd order logitudinal structure function are given as:

S2(r) = ((ur(x+rey) — ul(x))2> (18)
S3r) = ((ur(x+rer) — ul(x))3> (19)
From equation for 2-point correlation, it is possible to write:

3 (" ,05%(s,t) 5% 4
—_ —_— g _ _— 2
A s 5 ds 6v o S3 € (20)

In the inertial subrange, under steady state conditions,
3 4
Si(r) = —ger (21)

This is one of the few exact analytical results in turbulence.
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Isotropic Velocity Spectrum Tensor

Representation for ¢;;(k) in isotropic flows is:

dij(k) = A(k)kik; + B(k)di;
8Rij
or;
= ikj [A(k)kikj + B(k)(i‘j] =0
= A(k)k* + B(k) = 0= ¢ij(k) = A(k)[kik; — k*5;]

= 0:>ikj<z5ij =0
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Isotropic Velocity Spectrum Tensor

Now let's use:

Rigl0) = K= /E b=y [ ntod

/ e (k)dPk = / —2k2A(k)d’k = /O h —2k2A(k)(47k?)dk

or, A(k) = —ﬁE(kz), and therefore..

E(k
¢ij(k) = 4751{:2 [kQ(Sij — kikj]

Amitabh Bhattacharya Dynamics of Two-Point Correlation and Energy Spectra



The " One Dimensional” Energy Spectrum

Typical experimental probes only measure just one velocity
component in time. If the mean streamwise flow is U, and the
turbulence is assumed to be "frozen” while passing through the
probe then " Taylor's hypothesis” states:

(u(t)u(t—l—At)) = Rll(AtUel)

How can we get the energy spectra E(k) from the longitudinal
2-point correlation 7 Start with the 1D energy spectrum Ej;(k1):

Eij(k1) = F[Rij(re1)](k1)

But R;j(re1) = [ ¢ij(K') explik]r]d®k’, so that:

Eij(ki) = — [/gb” ) exp(ikyr) exp(—ikyr)dk}dkbdky | dr

—0o0
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The "One Dimensional” Energy Spectrum

o0

Use 8(k1 — k}) = 5= [ exp[—i(ki — k})]dr to get:

(k) = / / )k, dk K,
[o.¢] oo k
= //47r(k2(k25ij—kikj)dk2dk3
Specifically:

— k2)dkodks

o0
Eyi(k1) /
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The "One Dimensional” Energy Spectrum

Transforming variables to ko = k, cos @ and ks = k. sin 0, we get:

oo
E(k) Kt
Fin(k) = — [1——=|dk
(k) 2k [ k2
k1
Fig. 6.10. A sketch of ber space showing the definition of the radial coordi-

nate w;,.
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The "One Dimensional” Energy Spectrum

Taking derivatives:

d (1dEy
E(k) = ki—(—
(k) Vdky (k1 dky >

Clearly, E(k) o €2/3k=5/3 implies E(k1) o ¢2/3k; /. Also,

E(k _
ij ]52) ~ 2/31-11/3
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The "One Dimensional” Energy Spectrum

Fig 6.17. Compensated one-dimensional spectra measured in a turbulent bounda
layer at R; = 1,450, Solid lines, experimental data Saddoughi and Veeravalli (1994);
dashed lines, model spectra from Eq. (6.246); long dashed lines, €, and C; correspond-
ing to Kolmogorov inertial-range spectra. (For Ey1, Ex: and Es the model spectra are
for R; = 1,450, 690, and 910, respectively, corresponding to the measured values of
(i), e}, and (ui))
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Energy Transfer Via Triad Interactions

In a periodic box, 3D velocity field given by:

u(x,t) = Z u(k, t) explik - x|
k

In wave-space, the NS equations are:

d . . . .
(dt + Vk:2> u; = —ikPjr(k) /z:” 5k,k/+kuuk(kl,t)ul(k",t)J—f—
Kk Triad Interactions
fi(k,t)
—
Large Scale Forcing
kjky
P(k) = =5
ikyfr, = 0 (to ensure continuity)
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Energy Transfer Via Triad Interactions

We can write down the equation for E(k,t) = 5 (g (k,t)) as

% Real[frul(k, t)] + T'(k,t) — 2vk*E(k,t)  (22)
T(k,t) Pj;Real

Z (it (k)i (K i (k — k’>>] (23)

Possible to show that 37, 7'(

k,t) = 0. Thus, T'(k,t) does not

add/subtract any energy globally. It only causes transfer of energy
between scales.

Let's perform similar analysis via Fourier Transform
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Evolution of Velocity Spectrum Tensor

» Obtain equation for velocity spectrum tensor by Fourier
transforming two-point correlation tensor equation

» Remember that:

bi(k) — # / Rij(r)expl—ik-rldr  (24)
k) — % / Ty (r)expl—ik -rldr  (25)
1 82Rij(r)

ki (k) =

23 | oror exp[—ik - r]dr (26)

where k‘2 = kiki

> Let’s also account for an average production, Pj;(k), coming
from a forcing term. This term is zero for k lying within
inertial range and dissipative range.
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Evolution of Velocity Spectrum Tensor

» Therefore:

Oij
ot

= Pz'j + Fij — 2Vk2¢z‘j (27)

» Recalling that, for isotropic turbulence,
pii(k) = E(k)/(2mk?), we get

E(k
0 ai ) _ Pk + T(k) — 20k E(k) (28)
where
» P(k) = 27k?P;;(k) is the production. P(k) > 0 can be
assumed.

» T(k) = 2mk?T;;(k) can be seen as the energy input into the
local k scale from the other scales.
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Evolution of Energy Spectrum Tensor

> Integrating over k from 0 to oo, and observing that
TKE =K = [° E(k)dk,
Net Production = P = [* P(k)dk,
J Tii(k)dk = T;;(0) = 0, we get:

% = P-2w /O Ook:QE(k)dk (29)
B , e8] 9 _ e8]
Sl = 2 /O K2E (k) dk /O D)k (30)

where D(k) = 2vk?E(k) is the dissipation spectra
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Some observations

» The net contribution of T'(k) to kinetic energy is zero:
fooo T(k)dk (i.e. it just transports energy from one scale to
another).

» If E(k) ~ k7" and 0 < n < 2, then, for k1 < ko, we have

E(k1) > E(ko) (31)
D(k1) < D(ks) (32)

Consistent with our assertion that dissipation occurs in the
small scales.
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Some observations

» For statistically stationary turbulence,
98k — 0 = P(k) + T(k) — D(k)
» P(k), D(k) is small in inertial range
» And, therefore, so is T'(k)
» In inertial scales, whatever energy that gets received from the
large scales is passed on to the smaller scales

» T'(k) = —P(k) <0 for very small k (integral scales) and
T(k) = D(k) > 0 for very large k (dissipative scales)

» Energy needs to cascade from large to small scales
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Energy transfer spectrum

» Now let's integrate the energy spectrum equation:

o [F Bk dk k k
0 Jo BEGDdkK / P(K)dk + / T(K)dk

k
—2v / K2E(K)dk' (33)
0

» Clearly, II(k) = — fo T(K')dK' is the net transfer of energy
from all scales with wavenumber less than k to all scales with
wavenumber more than k.

» II(k) is called the "transfer” spectrum.

» For k in inertial range,

> [¥P(K)AK =P = e
» and therefore II(k) =€
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Energy transfer spectrum

K1 Ky K

Ky Kpy L3

Fig 6.28. For homogeneous turbulence at very high Reynolds number, sketches of (a)
the energy and dissipation spectra, (b) the contributions to the balance equation for
E{(x,t) (Eq. (6.284)), and (c) the spectral encrgy-transfer rate,
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