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As evident from visualizations, turbulent flows are seen to contain a wide range of eddies,

which are swirling around at different angular velocities. Typically, the larger eddies are swirling

slowly, while the smaller ones seem to be swirling quickly. To try and develop a concrete theory

about the structure of turbulence, we have to formally quantify “eddies” and “swirling”. This

is not a trivial task, and for certain types of flows (e.g. wall-bounded flows), this is still a

topic of ongoing research. However, for most statistically stationary free shear flows (e.g. jets,

mixing layers) at high Re, we can assume a condition called “local isotropy”. By which, it is

meant that, if we focus on a region much smaller than the main length scale of the flow (e.g.

width of jet or mixing layer), then we can assume that the small eddies within that region

behave like they would in isotropic turbulence. This hypothesis forms the basis of many LES

and even RANS models. Therefore, we try and study isotropic turbulence in some detail in

this chapter.

To be specific, we consider the case of forced 3D homogeneous (statistically) isotropic

turbulence with periodic boundary conditions at the box limits. Physically, “forcing” simply

means stirring the large scales in the flow externally (e.g. with a spoon). Periodicity allows

us to decompose the velocity field into its respective Fourier modes. We first illustrate the

relationship between Energy spectra and two-point correlations.

For pedagogical reasons, we first consider a scalar function u(x) defined over 1D, 0 < x ≤ L,

with periodic boundary conditions (so that ∂n
xu(0) = ∂n

xu(L)). For such a function, we can use

the Fourier expansion:

u(x) =

N/2−1
∑

j=−N/2

ˆ̃uj exp[
i2πjx

L
]. (1)

Here, ˆ̃uj is the jth Fourier component of the function (which can be a complex number), N

is a positive integer, denoting total number of modes. The jth Fourier mode then clearly

represents the amplitude and phase of a 1D wave with wavelength λj = L/j; that is, we have

decomposed the function into waves, of different wavelengths, each having a different phase.

The above decomposition is more commonly written as u(x) =
∑N/2

j=−N/2 û(κ(j)) exp[
iκ(j)x

L ],

where û(κ(j)) = ˆ̃uj , and κ(j) = 2πj/L = 2π/λj is known as the “wavenumber” of the Fourier

mode. Eqn. (1) is now simply written as:

u(x) =
∑

κ

û(κ) exp[iκx], (2)

in which it is understood that the summation is over all κ(j) = 2πj/L; j = −N/2, ..., N/2− 1.

Note that, for a given mode j, wavenumber κj is proportional to the inverse of wavelength

λj . Thus, when we say we are looking at some property (say, amplitude) of small wavenumber

modes, then it imples that we are looking at the property of large flow structures (i.e. modes
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with large wavelength), and vice versa. In this theory, we assume that the range of wavenumbers

is large (i.e. that N is large).

Our next observation is that, since u(x) is real, therefore, û(k) = û∗(−k). Furthermore, the

Fourier modes are orthogonal, i.e.:

∫ L

0
exp[iκx] exp[iκ′x]dx = Lδκ,−κ′ , (3)

where δ is a version of the Kronecker Delta function:

δα,β =

{

1 if α = β

0 Otherwise
(4)

Multiplying Eqn. (2) by exp[iκ′x], integrating over x between [0 L] and then applying the

orthogonailty condition (3) yields:

û(κ) =
1

L

∫ L

0
u(x) exp[iκx]dx, (5)

which simply relates the Fourier component to the integral of the physical function.

Now we can show the relationship between correlations in physical space and the energy

distribution amongst different wave-numbers (or energy spectra). Here we keep in mind that,

since x is a direction of statistical homogeniety, therefore the average for any function f(u) can

be defined simply as f(u) = 1
L

∫ L
0 f(u)dx. Note that the averaging operator has been applied

to the integrand as well, since we are applying ensemble averaging on top of spatial averaging.

Thus, we obtain:

u =
1

L

∫ L

0
u(x)dx =

∑

κ

1

L
û(κ)

∫ L

0
exp[iκx]dx = û(0). (6)

The last equality follows from the fact that the integral of exp[iκx] over x will be zero for κ 6= 0
2. The above equation states that the zeroth Fourier mode represents the mean velocity of the

flow. While studying forced homogeneous isotropic turbulence, the mean plays no role in the

dynamics and is equated to zero. Similarly, we can write down, for the energy:

u2 =
1

L

∫ L

0
u(x)2dx =

∑

κ

∑

κ′

û(κ)û(κ′)

[

1

L

∫ L

0
exp{iκx} exp{iκ′x}dx

]

=
∑

κ

∑

κ′

û(κ)û(κ′)δκ,−κ′ (From orthogonality)

⇒ u2 =
∑

κ

û(κ)û∗(κ) =
∑

κ

|û(κ)|2 (7)

where we have used û(−κ) = û∗(κ). The above relationship implies that the energy of the

flow can be partitioned into the energy of its individual Fourier components; this partitioning

is possible mainly because of the orthogonality of the Fourier modes. In 1D, the quantity

E(κ) = |û(κ)|2 can be called as the energy spectra. We now turn to two-point correlations,

2keeping in mind that κ is only allowed to take the values 2πj/L, where j is an integer
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and derive:

R(r) = u(x)u(x+ r) =
1

L

∫ L

0
u(x)u(x+ r)dx

=
∑

κ

∑

κ′

û(κ)û(κ′)

[

1

L

∫ L

0
exp{iκx} exp{iκ′(x+ r)}dx

]

=
∑

κ

∑

κ′

û(κ)û(κ′) exp{iκ′r}

[

1

L

∫ L

0
exp{iκx} exp{iκ′(x)}dx

]

⇒ R(r) =
∑

κ

|û(κ)|2 exp[iκr] =
∑

κ

E(κ) exp[iκr] (8)

The above equation implies that the energy spectra E(κ) and two-point correlation R(r) are

Fourier transform pairs of each other. Using the fact that R(r) is a real function, we can rewrite

Eqn (8) as:

R(r) =
∑

κ>0

E(κ){exp[iκr] + exp[−iκr]} =
∑

κ>0

2E(κ) cos(κr) (9)

which leads us to the following relation:

∆R(r) = R(0)−R(r) =
∑

κ>0

2E(κ)[1− cos(κr)] (10)

In the above equation, Fourier modes with κ ≪ 1/r (and therefore with wavelengths much

larger than r) cannot contribute to ∆R(r), since the factor [1− cos(κr)] ≈ 0 for those modes.

In other words, ∆R(r) is a measure of energy in scales equal to or smaller than r. We can also

arrive at this result a bit more intuitively. Let’s observe that :

(u(x′)− u(x))2 =
[

u(x)u(x) + u(x′)u(x′)− 2u(x)u(x′)
]

= 2
[

u(x)u(x)− u(x)u(x+ r)
]

= 2 [R(0)−R(r)] = 2∆R(r) (11)

Thus, ∆R(r) represents a measure of velocity difference δur = u(x + r) − u(x) between

points that are separated by a distance r. Modes with wavelengths much larger than r will (by

definition) hardly vary between x and x + r. Hence, δur (and therefore ∆R(r)), will not get

any contribution from these large-wavelength modes.

All these results can now be seen in 3D as well. In that case, the domain is a cubic box of

size L× L× L, and the Fourier decomposition looks like:

uα(x) =
∑

κ

ûα(κ) exp[iκ · x] (12)

where κ = κ1ê1 + κ2ê2 + κ3ê3 is now the wave-vector, êi being the unit vector oriented along

the ith axis. The components κi of the wave-vector can take the values κi(j) = 2πj/L, with

j = −N/2, ..., 0, ...N/2− 1. The summation above is therefore over all the possible N3 values

that κ can take. To understand the physical meaning of the 3D Fourier mode exp[iκ · x],

consider the magnitude of the wave-vector, κ = |κ| and its orientation ê = κ/κ. We can

express x = sê + nên, where ê
n is some vector normal to ê. Clearly, exp[iκ · x] = exp[iκs]

will be a constant along any ê
n, while it will vary along ê like a one-dimensional Fourier wave.
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In other words, exp[iκ · x] is a Fourier wave traveling along κ, with the “crests” of the wave

oriented perpendicular to κ.

In 3D, the average energy is given by:

K =
1

2
ui(x)ui(x) =

1

2

∑

κ

ûi(κ)û∗i (κ) (13)

In the above equation, we have used the “Cartesian sum” notation, in which repeated indices

indicates summation from 1 to 3 over those components (e.g. aiai = a1a1 + a2a2 + a3a3). The

quantity ûi(κ)û∗i (κ) is called the correlation spectra (and not energy spectra); notice that it is

a function of κ. In isotropic turbulence, the energy per wavenumber should not depend on the

direction of the wavenumber, therefore we would now like to define a quantity called energy

spectra, E(κ), such that K =
∫

∞

0 E(κ)dκ. We cannot convert the summation in Eqn (13) to a

Reimann sum. Instead, we define:

E(κ) =
1

2

∑

κ
′

ûi(κ′)û∗i (κ
′)δ(κ− |κ′|) (14)

in which δ(x) is simply the Dirac delta function. Physically, Eqn (14) defines the energy spectra

at wavenumber κ as the sum of the energy of wavenumbers whose magnitude is equal to κ. More

importantly,
∫ κb

κa
E(κ)dκ gives the amount of energy present between wavenumbers κa < κ < κb.

In 3D space, the 2nd order, longitudinal “Structure function”, S2(r) = (u1(x+ rê1)− u1(x))2

is used to obtain scale-specific information about the flow field (similar to ∆R(r) earlier). It

can be shown that (Pope, page 226):

S2(r) = 2

∫

∞

0
E11(κ1)[1− cos(κ1r)]dκ1 (15)

where E11(κ1) =

∞
∫

−∞

∞
∫

−∞

E(κ)

2πκ2

[

1−
κ21
κ2

]

dκ2dκ3 (16)

where κ =
√

κ21 + κ22 + κ23 and the integration is over a plane of fixed κ1. E11(κ) is called

the “one-dimensional” spectra, and is different from the energy spectra E(κ). The important

conclusion from Eqns (15) is that if E(κ) ∼ κ−n then it follows that S2(r) ∼ rn−1, and vice-

versa. That is, the Structure function and Energy spectra are closely related to each other.

Now, let us try to derive the value of exponent n. We start with the forced N.S. equation:

∂ui
∂t

+
∂uiuk
∂xk

= −
∂p

∂xi
+ ν

∂2ui
∂xk∂xk

+ fi (17)

where f(x, t) is the forcing due to the “spoon”, which is active only in the large scales (or low

wavenmbers). We then derive the equation for the kinetic energy, K = uiui/2, by contracting

Eqn (17) with ui and then averaging:

ui
∂ui
∂t

+ ui
∂uiuk
∂xk

= −ui
∂p

∂xi
+ νui

∂2ui
∂xk∂xk

+ uifi (18)

Simplifying the above equation term-wise, keeping in mind that the turbulence reaches a steady

state, terms involving gradients of averaged quantities will be zero (due to homogeniety), and

that uk,k = 0 (continuity), we can obtain the following simplified equation:

fiui − νui,kui,k = 0 (19)
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The first term is the rate of production of energy (P ), due to the spoon, and the second

term is the rate of dissipation (ǫ). Production is occuring only in the large scales (from given

conditions). Interestingly, dissipation occurs purely due to viscosity, and is always taking away

energy from the flow. At what scales do dissipation occur ? Let’s do a scale decomposition of

ǫ, by first noting (from Eqn (12)):

∂ui
∂xj

(x) =
∑

κ

ikj ûi(κ) exp[iκ · x] (20)

which leads to

ν
∂ui
∂xj

∂ui
∂xj

(x) =
∑

κ

−ikj ûi(κ)ikj ûi(−κ)

=
∑

κ

k2ûi(κ)ûi(−κ) (21)

Again, we would like to express ǫ as an integral over a smooth spectra, and therefore we define:

ǫ̂(κ) =
∑

κ
′

κ′
2
ûi(κ′)û∗i (κ

′)δ(κ− |κ′|) (22)

so that ǫ =
∫

∞

0 ǫ̂(κ)dκ. We can in fact take κ′2 out of the summation (because δ(κ − |κ′|) is

nonzero over only the κ′ = κ shell) and obtain:

ǫ̂(κ) = κ2
∑

κ
′

ûi(κ′)û∗i (κ
′)δ(κ− |κ′|) = κ2E(κ) (23)

Assuming E(κ) ∼ k−n the condition n < 2 would imply that ǫ̂(κ) increases monotonically with

κ; i.e. dissipation occurs mainly in the small scales.

The above discussion yields the following conclusions. Production of energy P (= ǫ) occurs

in the large scales. Dissipation of energy (ǫ) occurs in the small scales. There is an intermediate

range, which does not primarily produce or dissipate energy. Rather, it transfers energy from

the large scales to the small scales. To obtain an estimate of the small dissipative scales, we

note that the only important quantities in these scales are ǫ and ν. Now, [ǫ] = L2T−3 and

[ν] = L2T−1. Therefore, the only length-scale we can obtain is η = (ν3/ǫ)1/4. Similarly, the

relevant quantities for the large scale are K and ǫ. Noting that [K] = L2T−2, we obtain the

“integral length scale”, or size of the largest eddies, as L = K3/ǫ.

On the basis of dimensional analysis, we can now derive expressions for energy spectra

E(κ) and S2(r) for the “inertial range” in κ or r. Note that both E(κ) and S2(r) yield scale-

specific information. There exists a range of scales given by η ≪ r ≪ L or, equivalently,

2π/L ≪ κ ≪ 2π/η, which can be said to be an overlap region between the integral scales and

the dissipative scales. These are the scales where only energy transfer is taking place. These

scales are too small to be influenced by K or L and too large to be influenced by ν. The only

relevant quantities here is the energy transfer rate, Π = ǫ, and the length scale r (or 2π/κ).

Thus, noting that [E] = L3T − 2, [ǫ] = L2T−3 and [κ] = L−1, we obtain, after postulating that

E(κ) = FE(ǫ, κ) and using dimensional analysis:

E(κ) = Cκǫ
2/3κ−5/3 (24)
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where Cκ is a universal constant, also known as the “Kolmogorov” constant. Similarly, if we

postulate that S2(r) = FS(ǫ, r), and if we observe that [S2] = L2T−2, then dimensional analysis

yields:

S(r) = Cǫ2/3r2/3 (25)

where C is again a universal constant. The exponents −5/3 and 2/3 are consistent with Eqn

(15)–(16) discussed earlier. That is if E(κ) ∼ κ−n ∼ κ−5/3, then it follows that n = 5/3, so

that S2(r) ∼ rn−1 ∼ r2/3.

We now discuss time-scales for the different scales. Let us say that we measure the velocity

scale of an “eddy” of size l by taking the difference in velocity vl ∼ |u(x + li) − u(x)|. This

eddy, having a round shape initially, elongates, due to its own flow field, and eventually breaks

up into two smaller eddies. We are basically describing a hypothetical mechanism for the

Kolmogorov cascade here. The time scale needed for the eddy to break is clearly around

tl ∼ l/vl. The energy transfer rate to the small scales is given by Πl = v2l /t
l = v3l /l. Noting

that Πl ∼ ǫ, we then obtain v3l ∼ ǫl, or vl ∼ ǫ1/3l1/3. Note that this is consistent with

v2r ∼ S2(r) ∼ ǫ2/3r2/3. Moreover, we obtain the time-scale for an eddy of size l to break up

(or “eddy turnover time”) as tl ∼ ǫ−1/3l2/3. Clearly, as the eddies become smaller, they break

more quickly. This fact forms the basis for the “local isotropy” condition mentioned earlier.

The large, anisotropic eddies break up very slowly, while the smaller scales, turning over much

faster, can quickly adjust themselves and attain an isotropic cascade. We can also obtain an

independent estimate of the dissipative scales η using this argument, via the definition of a

viscous time scale tdiff = l2/ν, which is the time taken for an eddy of length l to simply diffuse

out due to viscosity. If tl < tdiff , then the eddy will break up due to inertial forces, otherwise it

will break up due to viscosity. At tl = tdiff , the threshold for viscous breakup is reached, and

we obtain l = η = ν3/ǫ. The quantity η is called the “Kolmogorov scale”, and is the smallest

length scale in isotropic turbulence.

Using the above estimates of the range of length and time scales, we can also derive the

computational cost for simulating isotropic turbulence. The largest scales in the flow is the

integral length scale, L = K3/2/ǫ, while the smallest scale is η = (ν3/ǫ)1/4. Clearly, the

number of grid points needed is then N = (L/η)3 = ReL
9/4, where ReL = K2/(νǫ) is known

as the turbulent Reynolds number. The simulation will need to be run for at least one eddy-

turnover time, tL = K/ǫ. The time stepping will be limited by the Courant number, so that

∆t ∼ η/K1/2. Hence, number of time steps in the simulation will be Nt = tL/∆t = Re
3/4
L .

Hence, the net computational cost needed is NNt ∼ Re3L. Clearly, increasing the Reynolds

number leads to a steep increase in computational expense.
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