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PREFACE

THE CHEMICAL INDUSTRY has undergone significant changes during the past 25
years due to the increased cost of energy, increasingly stringent environmental reg-
ulations, and global competition in product pricing and quality. One of the most
important engineering tools for addressing these issues is optimization. Modifica-
tions in plant design and operating procedures have been implemented to reduce
costs and meet constraints, with an emphasis on improving efficiency and increas-
ing profitability. Optimal operating conditions can be implemented via increased
automation at the process, plant, and company levels, often called computer-
integrated manufacturing, or CIM. As the power of computers has increased, fol-
lowing Moore’s Law of doubling computer speeds every 18 months, the size and
complexity of problems that can be solved by optimization techniques have corre-
spondingly expanded. Effective optimization techniques are now available in soft-
ware for personal computers—a capability that did not exist 10 years ago.

To apply optimization effectively in the chemical industries, both the theory
and practice of optimization must be understood, both of which we explain in this
book. We focus on those techniques and discuss software that offers the most poten-
tial for success and gives reliable results.

The book introduces the necessary tools for problem solving. We emphasize
‘how to formulate optimization problems appropriately. because many engineers and
scientists find this phase of their decision-making process the most exasperating
and difficult. The nature of the model often predetermines the optimization algo-
rithm to be used. Because of improvements in optimization algorithms and soft-
ware, the modeling step usually offers more challenges and choices than the selec-
tion of the optimization technique. Appropriate meshing of the optimization
technique and the model are essential for success in optimization. In this book we
omit rigorous optimization proofs, replacing them with geometric or plausibility
arguments without sacrificing correctness. Ample references are cited for those
who wish to explore the theoretical concepts in more detail. '

xi



Xii Preface

The book contains three main sections. Part I describes how to specify the three
key components of an optimization problem, namely the

1. Objective function
2. Process model
3. Constraints

Part I comprises three chapters that motivate the study of optimization by giv-
ing examples of different types of problems that may be encountered in chemical
engineering. After discussing the three components in the previous list, we describe
six steps that must be used in solving an optimization problem. A potential user of
optimization must be able to translate a verbal description of the problem into the
appropriate mathematical description. He or she should also understand how the
problem formulation influences its solvability. We show how problem simplifica-
tion, sensitivity analysis, and estimating the unknown parameters in models are
important steps in model building. Chapter 3 discusses how the objective function
should be developed. We focus on economic factors in this chapter and present sev-
eral alternative methods of evaluating profitability.

Part II covers the theoretical and computational basis for proven techniques in
optimization. The choice of a specific technique must mesh with the three compo-
nents in the list. Part II begins with Chapter 4, which provides the essential con-
ceptual background for optimization, namely the concepts of local and global
optima, convexity, and necessary and sufficient conditions for an optimum. Chap-
ter 5 follows with a brief explanation of the most commonly used one-dimensional
search methods. Chapter 6 presents reliable unconstrained optimization and meth-
ods. Chapter 7 treats linear programming theory, applications, and software, using
matrix methods. Chapter 8 covers recent advances in nonlinear programming meth-
ods and software, and Chapter 9 deals with optimization of discrete processes,
highlighting mixed-integer programming problems and methods. We conclude Part
IT with a new chapter (for the second edition) on global optimization methods, such
as tabu search, simulated annealing, and genetic algorithms. Only deterministic
optimization problems are treated throughout the book because lack of space pre-
cludes discussing stochastic variables, constraints, and coefficients.

Although we include many simple applications in Parts I and II to illustrate the
optimization techniques and algorithms, Part III of the book is exclusively devoted
to illustrations and examples of optimization procedures, classified according to
their applications: heat transfer and energy conservation (Chapter 11), separations
(Chapter 12), fluid flow (Chapter 13), reactor design (Chapter 14), and plant design
(Chapter 15), and a new chapter for the second edition on planning, scheduling, and
control using optimization techniques (Chapter 16). Many students and profession-
als learn by example or analogy and often discover how to solve a problem by
examining the solution to similar problems. By organizing applications of opti-
mization in this manner, you can focus on a single class of applications of particu-
lar interest without having to review the entire book. We present a spectrum of
modeling and solution methods in each of these chapters. The introduction to Part
III lists each application classified by the technique employed. In some cases the



Preface v Xiii

optimization method may be an analytical solution, leading to simple design rules;
most examples illustrate numerical methods. In some applications the problem
statement may be so complex that it cannot be explicitly written out, as in plant
design and thus requires the use of a process simulator. No exercises are included
in Part III, but an instructor can (1) modify the variables, parameters, conditions, or
constraints in an example, and (2) suggest a different solution technique to obtain
exercises for solution by students. '

An understanding of optimization techniques does not require complex math-
ematics. We require as background only basic tools from multivariable calculus and
linear algebra to explain the theory and computational techniques and provide you
with an understanding of how optimization techniques work (or, in some cases, fail
to work).

Presentation of each optimization technique is followed by examples to illus-
trate an application. We also have included many practically oriented homework
problems. In university courses, this book could be used at the upper-division or the
first-year graduate levels, either in a course focused on optimization or on process
design. The book contains more than enough material for a 15-week course on opti-
mization. Because of its emphasis on applications and short case studies in Chap-
ters 11-16, it may also serve as one of the supplementary texts in a senior unit oper-
ations or design course.

In addition to use as a textbook, the book is also suitable for use in individual
study, industrial practice, industrial short courses, and other continuing education
programs.

We wish to acknowledge the helpful suggestions of several colleagues in devel-
oping this book, especially Yaman Arkun, Georgia Institute of Technology; Lorenz
T. Biegler, Carnegie-Mellon University; James R. Couper, University of Arkansas;
James R. Fair, University of Texas-Austin; Christodoulos Floudas, Princeton Uni-
versity; Fred Glover, University of Colorado; Ignacio Grossmann, Carnegie-Mellon
University; K. Jayaraman, Michigan State University; I. Lefkowitz, Case Western
Reserve University; Tom McAvoy, University of Maryland; Jdnos Pintér, Pintér
Consulting Services; Larry Ricker, University of Washington; and Mark Stadtherr,
University of Note Dame. Several of the examples in Chapters 11-16 were pro-
vided by friends in industry and in universities and are acknowledged there. We
also recognize the help of many graduate students in developing solutions to the
examples, especially Juergen Hahn and Tyler Soderstrom for this edition.

T. F. Edgar
D. M. Himmelblau
L. S. Lasdon



ABOUT THE AUTHORS

THOMAS F. EDGAR holds the Abell
Chair in chemical engineering at the
University of Texas at Austin. He earned
a B. S. in chemical engineering from the
University of Kansas and a Ph. D. from
Princeton University. Before receiving
his doctorate, he was employed by Con-
tinental Oil Company. His professional
honors include selection as the 1980
winner of the AIChE Colburn Award,
ASEE Meriam-Wiley and Chemical
Engineering Division Awards, ISA Edu-
cation Award, and AIChE Computing in
Chemical Engineering Award. He is
listed in Who’s Who in America.

He has published over 200 papers
in the fields of process control, opti-
mization, and mathematical modeling

of processes such as separations, combustion, and microelectronics processing. He
is coauthor of Process Dynamics and Control, published by Wiley in 1989. Dr.
Edgar was chairman of the CAST Division of AIChE in 1986, president of the
CACHE Corporation from 1981 to 1984, and president of AIChE in 1997.

X1V

DAVID M. HIMMELBLAU is the Paul
D. and Betty Robertson Meek and
American Petrofina Foundation Cen-
tennial Professor Emeritus in Chemical
Engineering at the University of Texas
at Austin. He received a B. S. degree
from Massachusetts Institute of Tech-
nology and M. S. and Ph. D. degrees
from the University of Washington. He
has taught at the University of Texas for
over 40 years. Prior to that time he
worked for several companies including
International Harvester Co., Simpson
Logging Co., and Excel Battery Co.
Among his more than 200 publications
are 11 books including a widely used
introductory book in chemical engi-



About the Authors XV

neering; books on process analysis and simulation, statistics, decomposition, fault
detection in chemical processes; and nonlinear programming. He is a fellow of the
American Institute of Chemical Engineers and served AIChE in many capacities,
including as director. He also has been a CACHE trustee for many years, serving
as president and later executive officer. He received the AIChE Founders Award and
the CAST Division Computers in Chemical Engineering Award. His current areas
of research are fault detection, sensor validation, and interactive learning via
computer-based educational materials.

LEON LASDON holds the David Bru-
ton Jr. Centennial Chair in Business
Decision Support Systems in the Man-
agement Science and Information Sys-
tems Department, College of Business
Administration, at the University of
Texas at Austin and has taught there
since 1977. He received a B. S. E. E.
degree from Syracuse University and an
M. S. E. E. degree and a Ph. D. in sys-
tems engineering from Case Institute of
Technology.

Dr. Lasdon has published an award-
winning text on large-scale systems
optimization, and more than 100 articles
in journals such as Management Sci-
ence, Operations Research, Mathemati-
cal Programming, and the INFORMS
Journal on Computing. His research interests include optimization algorithms and
software, and applications of optimization and other OR/MS methodologies. He is
a coauthor of the Microsoft Excel Solver, and his optimization software is used in
many industries and universities worldwide. He is consulted widely on problems
involving OR/MS applications.







PART I
PROBLEM FORMULATION

Formulating the problem is perhaps the most crucial step in optimization. Problem
formulation requires identifying the essential elements of a conceptual or verbal
statement of a given application and organizing them into a prescribed mathemati-
cal form, namely, ' '

1. The objective function (economic criterion)
2. The process model (constraints)

The objective function represents such factors as profit, cost, energy, and yield
in terms of the key variables of the process being analyzed. The process model and
constraints describe the interrelationships of the key variables. It is important to
learn a systematic approach for assembling the physical and empirical relations and
data involved in an optimization problem, and Chapters 1, 2, and 3 cover the rec-
ommended procedures. Chapter 1 presents six steps for optimization that can serve
as a general guide for problem solving in design and operations analysis. Numer-
ous examples of problem formulation in chemical englneenng are presented to
illustrate the steps.

Chapter 2 summarizes the characteristics of process models and explains how
to build one. Special attention is focused on developing mathematical models, par-
ticularly empirical ones, by fitting empirical data using least squares, which itself
is an optimization procedure.

Chapter 3 treats the most common type of objective function, the cost or rev-
enue function. Historically, the majority of optimization applications have involved
trade-offs between capital costs and operating costs. The nature of the trade-off
depends on a number of assumptions such as the desired rate of return on invest-
ment, service life, depreciation method, and so on. While an objective function
based on net present value is preferred for the purposes of optimization, discounted
cash flow based on spreadsheet analysis can be employed as well.

It is important to recognize that many possible mathematical problem formu-
lations can result from an engineering analysis, depending on the assumptions

9



2 PART I: Problem Formulation

made and the desired accuracy of the model. To solve an optimization problem, the
mathematical formulation of the model must mesh satisfactorily with the computa-
tional algorithm to be used. A certain amount of artistry, judgment, and experience
is therefore required during the problem formulation phase of optimization.
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4 PART I: Problem Formulation

OPTIMIZATION IS THE use of specific methods to determine the most cost-effective
and efficient solution to a problem or design for a process. This technique is one of
the major quantitative tools in industrial decision making. A wide variety of prob-
lems in the design, construction, operation, and analysis of chemical plants (as well
as many other industrial processes) can be resolved by optimization. In this chap-
ter we examine the basic characteristics of optimization problems and their solution
techniques and describe some typical benefits and applications in the chemical and
petroleum industries.

1.1 WHAT OPTIMIZATION IS ALL ABOUT

A well-known approach to the principle of optimization was first scribbled cen-
turies ago on the walls of an ancient Roman bathhouse in connection with a choice
~ between two aspirants for emperor of Rome. It read—*“De doubus malis, minus est
semper aligendum”—of two evils, always choose the lesser.

Optimization pervades the fields of science, engineering, and business. In
physics, many different optimal principles have been enunciated, describing natu-
ral phenomena in the fields of optics and classical mechanics. The field of statistics
treats various principles termed “maximum likelihood,” “minimum loss,” and “least

9 ¢ 2% ¢

squares,” and business makes use of “maximum profit,” “minimum cost,” “maxi-
mum use of resources,” “minimum effort,” in its efforts to increase profits. A typi-
cal engineering problem can be posed as follows: A process can be represented by
some equations or perhaps solely by experimental data. You have a single perform-
ance criterion in mind such as minimum cost. The goal of optimization is to find
the values of the variables in the process that yield the best value of the perform-
ance criterion. A trade-off usually exists between capital and operating costs. The
described factors—process or model and the performance criterion—constitute the
optimization “problem.”

Typical problems in chemical engineering process design or plant operation
have many (possibly an infinite number) solutions. Optimization is concerned with
selecting the best among the entire set by efficient quantitative methods. Comput-
ers and associated software make the necessary computations feasible and cost-
effective. To obtain useful information using computers, however, requires (1) crit-
ical analysis of the process or design, (2) insight about what the appropriate
performance objectives are (i.e., what is to be accomplished), and (3) use of past
experience, sometimes called engineering judgment.

1.2 WHY OPTIMIZE?

Why are engineers interested in optimization? What benefits result from using this
method rather than making decisions intuitively? Engineers work to improve the
initial design of equipment and strive to enhance the operation of that equipment
once it is installed so as to realize the largest production, the greatest profit, the
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minimum cost, the least energy usage, and so on. Monetary value provides a con-
venient measure of different but otherwise incompatible objectives, but not all
problems have to be considered in a monetary (cost versus revenue) framework.

In plant operations, benefits arise from improved plant performance, such as
improved yields of valuable products (or reduced yields of contaminants), reduced
energy consumption, higher processing rates, and longer times between shutdowns.
Optimization can also lead to reduced maintenance costs, less equipment wear, and
better staff utilization. In addition, intangible benefits arise from the interactions
among plant operators, engineers, and management. It is extremely helpful to sys-
tematically identify the objective, constraints, and degrees of freedom in a process
or a plant, leading to such benefits as improved quality of design, faster and more
reliable troubleshooting, and faster decision making.

Predicting benefits must be done with care. Design and operating variables in
most plants are always coupled in some way. If the fuel bill for a distillation col-
umn is $3000 per day, a 5-percent savings may justify an energy conservation proj-
ect. In a unit operation such as distillation, however, it is incorrect to simply sum
the heat exchanger duties and claim a percentage reduction in total heat required. A
reduction in the reboiler heat duty may influence both the product purity, which can
translate to a change in profits, and the condenser cooling requirements. Hence, it
may be misleading to ignore the indirect and coupled effects that process variables
have on costs. -

What about the argument that the formal application of optimization is really
not warranted because of the uncertainty that exists in the mathematical represen-
tation of the process or the data used in the model of the process? Certainly such
an argument has some merit. Engineers have to use judgment in applying opti-
mization techniques to problems that have considerable uncertainty associated with
them, both from the standpoint of accuracy and the fact that the plant operating
parameters and environs are not always static. In some cases it may be possible to
carry out an analysis via deterministic optimization and then add on stochastic fea-
tures to the analysis to yield quantitative predictions of the degree of uncertainty.
Whenever the model of a process is idealized and the input and parameter data only
known approximately, the optimization results must be treated judiciously. They
can provide upper limits on expectations. Another way to evaluate the influence of
uncertain parameters in optimal design is to perform a sensitivity analysis. It is pos-
sible that the optimum value of a process variable is unaffected by certain parame-
ters (low sensitivity); therefore, having precise values for these parameters will not
be crucial to finding the true optimum. We discuss how a sensitivity analysis is per-
formed later on in this chapter.

1.3 SCOPE AND HIERARCHY OF OPTIMIZATION

Optimization can take place at many levels in a company, ranging from a complex
combination of plants and distribution facilities down through individual plants,
combinations of units, individual pieces of equipment, subsystems in a piece of
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equipment, or even smaller entities (Beveridge and Schechter, 1970). Optimization
problems can be found at all these levels. Thus, the scope of an optimization prob-
lem can be the entire company, a plant, a process, a single unit operation, a single
piece of equipment in that operation, or any intermediate system between these.
The complexity of analysis may involve only gross features or may examine minute
detail, depending upon the use to which the results will be put, the availability of
accurate data, and the time available in which to carry out the optimization. In a
typical industrial company optimization can be used in three areas (levels): (1)
management, (2) process design and equipment specification, and (3) plant opera-
tions (see Fig. 1.1).

Management makes decisions concerning project evaluation, product selection,
corporate budget, investment in sales versus research and development, and new
plant construction (i.e., when and where should new plants be constructed). At this
level much of the available information may be qualitative or has a high degree of
uncertainty. Many management decisions for optimizing some feature(s) of a large
company therefore have the potential to be significantly in error when put into prac-
tice, especially if the timing is wrong. In general, the magnitude of the objective
function, as measured in dollars, is much larger at the management level than at the
other two levels.

Individuals engaged in process design and equipment specification are con-
cerned with the choice of a process and nominal operating conditions. They answer
questions such as: Do we design a batch process or a continuous process? How
many reactors do we use in producing a petrochemical? What should the configu-
rations of the plant be, and how do we arrange the processes so that the operating
efficiency of the plant is at a maximum? What is the optimum size of a unit or com-
bination of units? Such questions can be resolved with the aid of so-called process

Management
Allocation
and Design Operations
scheduling
Individual
- equipment
FIGURE 1.1

Hierarchy of levels of optimization.
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design simulators or flowsheeting programs. These large computer programs carry
out the material and energy balances for individual pieces of equipment and com-
bine them into an overall production unit. Iterative use of such a simulator is often
necessary to arrive at a desirable process flowsheet.

Other, more specific decisions are made in process design, including the actual
choice of equipment (e.g., more than ten different types of heat exchangers are
available) and the selection of construction materials of various process units.

The third constituency employing optimization operates on a totally different
time scale than the other two. Process design and equipment specification is usu-
ally performed prior to the implementation of the process, and management deci-
sions to implement designs are usually made far in advance of the process design
step. On the other hand, optimization of operating conditions is carried out
monthly, weekly, daily, hourly, or even, at the extreme, every minute. Plant opera-
tions are concerned with operating controls for a given unit at certain temperatures,
pressures, or flowrates that are the best in some sense. For example, the selection
of the percentage of excess air in a process heater is critical and involves balancing
the fuel—air ratio to ensure complete combustion while making the maximum use
of the heating potential of the fuel.

Plant operations deal with the allocation of raw materials on a daily or weekly
basis. One classical optimization problem, which is discussed later in this text, is
the allocation of raw materials in a refinery. Typical day-to-day optimization in a
plant minimizes steam consumption or cooling water consumption.

Plant operations are also concerned with the overall picture of shipping, trans-
portation, and distribution of products to engender minimal costs. For example, the
frequency of ordering, the method of scheduling production, and scheduling deliv-
ery are critical to maintaining a low-cost operation.

The following attributes of processes affecting costs or profits make them
attractive for the application of optimization:

1. Sales limited by production: If additional products can be sold beyond current
capacity, then economic justification of design modifications is relatively easy.
Often, increased production can be attained with only slight changes in operat-
ing costs (raw materials, utilities, etc.) and with no change in investment costs.
This situation implies a higher profit margin on the incremental sales.

2. Sales limited by market: This situation is susceptible to optimization only if
improvements in efficiency or productivity can be obtained; hence, the economic
incentive for implementation in this case may be less than in the first example
because no additional products are made. Reductions in unit manufacturing
costs (via optimizing usage of utilities and feedstocks) are generally the main
targets.

3. Large unit throughputs: High production volume offers great potential for
increased profits because small savings in production costs per unit are greatly
magnified. Most large chemical and petroleum processes fall into this classifi-
cation.

4. High raw material or energy consumption: Significant savings can be made by
reducing consumption of those items with high unit costs.
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5. Product quality exceeds product specifications: If the product quality is signifi-
cantly better than that required by the customer, higher than necessary produc-
tion costs and wasted capacity may occur. By operating close to customer spec-
ification (constraints), cost savings can be obtained.

6. Losses of valuable components through waste streams: The chemical analysis of
various plant exit streams, both to the air and water, should indicate if valuable
materials are being lost. Adjustment of air—fuel ratios in furnaces to minimize
hydrocarbon emissions and hence fuel consumption is one such example. Pollu-
tion regulations also influence permissible air and water emissions.

7. High labor costs: In processes in which excessive handling is required, such as
in batch operation, bulk quantities can often be handled at lower cost and with a
smaller workforce. Revised layouts of facilities can reduce costs. Sometimes no
direct reduction in the labor force results, but the intangible benefits of a less-

“ened workload can allow the operator to assume greater responsibility.

Two valuable sources of data for identifying opportunities for optimization
include (1) profit and loss statements for the plant or the unit and (2) the periodic
operating records for the plant. The profit and loss statement contains much valu-
able information on sales, prices, manufacturing costs, and profits, and the operat-
ing records present information on material and energy balances, unit efficiencies,
production levels, and feedstock usage.

Because of the complexity of chemical plants, complete optimization of a
given plant can be an extensive undertaking. In the absence of complete optimiza-
tion we often rely on “incomplete optimization,” a special variety of which is
termed suboptimization. Suboptimization involves optimization for one phase of an
operation or a problem while ignoring some factors that have an effect, either obvi-
ous or indirect, on other systems or processes in the plant. Suboptimization is often
necessary because of economic and practical considerations, limitations on time or
personnel, and the difficulty of obtaining answers in a hurry. Suboptimization is
useful when neither the problem formulation nor the available techniques permits
obtaining a reasonable solution to the full problem. In most practical cases, subop-
timization at least provides a rational technique for approaching an optimum.

Recognize, however, that suboptimization of all elements does not necessarily
ensure attainment of an overall optimum for the entire system. Subsystem objec-
tives may not be compatible nor mesh with overall objectives.

1.4 EXAMPLES OF APPLICATIONS OF OPTIMIZATION

Optimization can be applied in numerous ways to chemical processes and plants.
Typical projects in which optimization has been used include

1. Determmlng the best sites for plant location:

2. Routing tankers for the distribution of crude and refined products
3. Sizing and layout of a pipeline.

4. Designing equipment and an entire plant.
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5. Scheduling maintenance and equipment replacement.
6. Operating equipment, such as tubular reactors, columns, and absorbers.
7. Evaluating plant data to construct a model of a process.
8. Minimizing inventory charges.
9. Allocating resources or services among several processes.
10. Planning and scheduling construction.

These examples provide an introduction to the types of variables, objective func-
tions, and constraints that will be encountered in subsequent chapters.

In this section we provide four illustrations of “optimization in practice.” that
is, optimization of process operations and design. These examples will help illus-
trate the general features of optimization problems, a topic treated in more. detail
in Section 1.5.

EXAMPLE 1.1 OPTIMAL INSULATION THICKNESS

Insulation design is a classic example of overall cost saving that is especially perti-
nent when fuel costs are high. The addition of insulation should save money through
reduced heat losses; on the other hand, the insulation material can be expensive. The
amount of added insulation needed can be determined by optimization.

Assume that the bare surface of a vessel is at 700°F with an ambient temperature
of 70°F. The surface heat loss is 4000 Btu/(h)(ft?). Add 1 in. of calcium silicate insu-
lation and the loss will drop to 250 Btu/(h)(ft?). At an installed cost of $4.00 ft? and a
cost of energy at $5.00/10° Btu, a savings of $164 per year (8760 hours of operation)
per square foot would be realized. A simplified payback calculation shows a payback
period of

$4.00/(ft?)
$164/(ft*)(year)

= 0.0244 year, or 9 days

As additional inches of insulation are added, the increments must be justified by the
savings obtained. Figure E1.1 shows the outcome of adding more layers of insulation.
Since insulation can only be added in 0.5-in. increments, the possible capital costs are
shown as a series of dots; these costs are prorated because the insulation lasts for sev-
eral years before having to be replaced. In Figure E1.1 the energy loss cost is a con-
tinuous curve because it can be calculated directly from heat transfer principles. The
total cost is also shown as a continuous function. Note that at some point total costs
begin increasing as the insulation thickness increases because little or no benefit in
heat conservation results. The trade-off between energy cost and capital cost, and the
optimum insulation thickness, can be determined by optimization. Further discussion
of capital versus operating costs appears in Chapter 3; in particular, see Example 3.3.

EXAMPLE 1.2 OPTIMAL OPERATING CONDITIONS
OF A BOILER

Another example of optimization can be encountered in the operation of a boiler.
Engineers focus attention on utilities and powerhouse operations within refineries and
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Total cost curve

Cost ($/year) | Minimum

———————————— + Cost of insulation
annual cost

Cost of lost energy

x*

Insulation thickness

FIGURE El.1

The effect of insulation thickness on total cost (x* = optimum
thickness). Insulation can be purchased in 0.5-in. increments. (The total
cost function is shown as a smooth curve for convenience, although the
sum of the two costs would not actually be smooth.)

process plants because of the large amounts of energy consumed by these plants and
the potential for significant reduction in the energy required for utilities generation
and distribution. Control of environmental emissions adds complexity and constraints
in optimizing boiler operations. In a boiler it is desirable to optimize the air—fuel ratio
so that the thermal efficiency is maximized; however, environmental regulations
encourage operation under fuel-rich conditions and lower combustion temperatures in
order to reduce the emissions of nitrogen oxides (NO,). Unfortunately, such operating
conditions also decrease efficiency because some unburned fuel escapes through the
stacks, resulting in an increase in undesirable hydrocarbon (HC) emissions. Thus, a
conflict in operating criteria arises.

Figure E1.24a illustrates the trade-offs between efficiency and emissions, sug-
gesting that more than one performance criterion may exist: We are forced to consider
maximizing efficiency versus minimizing emissions, resulting in some compromise
of the two objectives.

Another feature of boiler operations is the widely varying demands caused by
changes in process operations, plant unit start-ups and shutdowns, and daily and sea-
sonal cycles. Because utility equipment is often operated in parallel, demand swings
commonly affect when another boiler, turbine, or other piece of equipment should be
brought on line and which one it should be. ,

Determining this is complicated by the feature that most powerhouse equipment
cannot be operated continuously all the way down to the idle state, as illustrated by
Figure E1.2b for boilers and turbines. Instead, a range of continuous operation may
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' FIGURE El1.2
Efficiency and emissions of a boiler as a function of air—fuel ratio. (1.0 =
stoichiometric air-fuel ratio.)

exist for certain conditions, but a discrete jump to a different set of conditions (here
idling conditions) may be required if demand changes. In formulating many opti-
mization problems, discrete variables (on—off, high—low, integer 1, 2, 3, 4, etc.) must
be accommodated. ' :

EXAMPLE 1.3 OPTIMUM DISTILLATION REFLUX

Prior to 1974, when fuel costs were low, distillation column trains used a strategy
involving the substantial consumption of utilities such as steam and cooling water in
order to maximize separation (i.e., product purity) for a given tower. However, the
operation of any one tower involves certain limitations or constraints on the process,
such as the condenser duty, tower tray flooding, or reboiler duty.

The need for energy conservation suggests a different objective, namely mini-
mizing the reflux ratio. In this circumstance, one can ask: How low can the reflux
ratio be set? From the viewpoint of optimization, there is an economic minimum
value below which the energy savings are less than the cost of product quality degra-
dation. Figures E1.3a and E1.3b illustrate both alternatives. Operators tend to over-
reflux a column because this strategy makes it easier to stay well within the product

9
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FIGURE E1.2b
Discontinuity in operating regimen.
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Ilustration of optimal reflux for different fuel costs.
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specifications. Often columns are operated with a fixed flow control for reflux so that
the reflux ratio is higher than needed when feed rates drop off. This issue is discussed
in more detail in Chapter 12. '

EXAMPLE 1.4 MULTIPLANT PRODUCT DISTRIBUTION

A common problem encountered in large chemical companies involves the distribu-
tion of a single product (Y) manufactured at several plant locations. Generally, the
product needs to be delivered to several customers located at various distances from
each plant. It is, therefore, desirable to determine how much Y must be produced at
each of m plants (Y}, Y,, ..., Y,) and how, for example, Y, should be allocated to each
of n demand points (Y,,;, Y5, . . . , Y,,,). The cost-minimizing solution to this prob-
lem not only involves the transportation costs between each supply and demand point
but also the production cost versus capacity curves for each plant. The individual
plants probably vary with respect to their nominal production rate, and some plants
may be more efficient than others, having been constructed at a later date. Both of
these factors contribute to a unique functionality between production cost and pro-

duction rate. Because of the particular distribution of transportation costs, it may be
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desirable to manufacture more product from an old, inefficient plant (at higher cost)
than from a new, efficient one because new customers may be located very close to
the old plant. On the other hand, if the old plant is operated far above its design rate,
costs could become exorbitant, forcing a reallocation by other plants in spite of high
transportation costs. In addition, no doubt constraints exist on production levels from
each plant that also affect the product distribution plan.

1.5 THE ESSENTIAL FEATURES OF OPTIMIZATION PROBLEMS

Because the solution of optimization problems involves various features of mathe-
matics, the formulation of an optimization problem must use mathematical expres-
sions. Such expressions do not necessarily need to be very complex. Not all prob-
lems can be stated or analyzed quantitatively, but we will restrict our coverage to
quantitative methods. From a practical viewpoint, it is important to mesh properly
the problem statement with the anticipated solution technique.

A wide variety of optimization problems have amazingly similar structures.
Indeed, it is this similarity that has enabled the recent progress in optimization tech-
niques. Chemical engineers, petroleum engineers, physicists, chemists, and traffic
engineers, among others, have a common interest in precisely the same mathemat-
ical problem structures, each with a different application in the real world. We can
make use of this structural similarity to develop a framework or methodology
within which any problem can be studied. This section describes how any process
problem, complex or simple, for which one desires the optimal solution should be
organized. To do so, you must (a) consider the model representing the process and
(b) choose a suitable objective criterion to guide the decision making.

Every optimization problem contains three essential categories:

1. At least one objective function to be optimized (profit function, cost function,
etc.).

2. Equality constraints (equations).

3. Inequality constraints (inequalities).

Categories 2 and 3 constitute the model of the process or equipment; category 1 is
sometimes called the economic model.

By a feasible solution of the optimization problem we mean a set of variables
that satisfy categories 2 and 3 to the desired degree of precision. Figure 1.2 illus-
trates the feasible region or the region of feasible solutions defined by categories 2
and 3. In this case the feasible region consists of a line bounded by two inequality
constraints. An optimal solution is a set of values of the variables that satisfy the
components of categories 2 and 3; this solution also provides an optimal value for
the function in category 1. In most cases the optimal solution is a unique one; in
some it is not. If you formulate the optimization problem so that there are no resid-
ual degrees of freedom among the variables in categories 2 and 3, optimization is
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FIGURE 1.2

Feasible region for an optimization problem involving two independent
variables. The dashed lines represent the side of the inequality constraints
in the plane that form part of the infeasible region. The heavy line shows
the feasible region.

not needed to obtain a solution for a problem. More specifically, if m, equals the
number of independent consistent equality constraints and m; equals the number of
independent inequality constraints that are satisfied as equalities (equal to zero),
and if the number of variables whose values are unknown is equal to m, + m;,, then
at least one solution exists for the relations in components 2 and 3 regardless of the
optimization criterion. (Multiple solutions may exist when models in categories 2
and 3 are composed of nonlinear relations.) If a unique solution exists, no opti-
mization is needed to obtain a solution—one just solves a set of equations and need
not worry about optimization methods because the unique feasible solution is by
definition the optimal one.

On the other hand, if more process variables whose values are unknown exist
in category 2 than there are independent equations, the process model is called
underdetermined, that is, the model has an infinite number of feasible solutions so
that the objective function in category 1 is the additional criterion used to reduce
the number of solutions to just one (or a few) by specifying what is the “best” solu-
tion. Finally, if the equations in category 2 contain more independent equations
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than variables whose values are unknown, the process model is overdetermined and
no solution satisfies all the constraints exactly. To resolve the difficulty, we some-
times choose to relax some or all of the constraints. A typical example of an overde-
termined model might be the reconciliation of process measurements for a material
balance. One approach to yield the desired material balance would be to resolve the
set of inconsistent equations by minimizing the sum of the errors of the set of equa-
tions (usually by a procedure termed least squares).

In this text the following notation will be used for each category of the opti-
mization problem:

Minimize: f(x) objective function (a)

Subjectto: h(x) = 0 equality constraints (b)

g(x) = 0 inequality constraints (©)

where x is a vector of n variables (x;, x,, . . . , x,), h(X) is a vector of equations of

dimension m,, and g(x) is a vector of inequalities of dimension m,. The total num-
ber of constraints is m = (m; + m,).

EXAMPLE 1.5 OPTIMAL SCHEDULING: FORMULATION OF
THE OPTIMATION PROBLEM

In this example we illustrate the formulation of the components of an optimization
- problem.
We want to schedule the production in two plants, A and B, each of which can
manufacture two products: 1 and 2. How should the scheduling take place to maxi-
mize profits while meeting the market requirements based on the following data:

Material
processed Profit
(Ib/day) ($/1b)
Plant 1 2 1 2
A My, My, Sa1 Sa2
B -Mp, My, Sp1 S

How many days per year (365 days) should each plant operate processing each kind
of material? Hints: Does the table contain the variables to be optimized? How do you
use the information mathematically to formulate the optimization problem? What
other factors must you consider?

Solution. How should we start to convert the words of the problem into mathematical

statements? First, let us define the variables. There will be four of them (z,,t4,, 5,

and tg,, designated as a set by the vector t) representing, respectively, the number of

days per year each plant operates on each material as indicated by the subscripts.
What is the objective function? We select the annual profit so that

f(t) =ty My Say + taxMypSsy + tyMpSpy + tgMpySp, (@
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Next, do any equality constraints evolve from the problem statement or from implicit
assumptions? If each plant runs 365 days per year, two equality constraints arise:

tar T 14 = 365 )
tgy + tp = 365 (c)

Finally, do any inequality constraints evolve from the problem statement or implicit
assumptions? On first glance it may appear that there are none, but further thought
indicates ¢ must be nonnegative since negative values of ¢ have no physical meaning:

=0 i=1,2 @)
tBi = 0 i = 1,2 N (e)

Do negative values of the coefficients S have physical meaning?
Other inequality constraints might be added after further analysis, such as a lim-
itation on the total amount of material 2 that can be sold (L,):

tasMyy + tpoMp = L, 03]
or a limitation on production rate for each product at each plant, namely
My =L,
My, =Ly
Mp =L,
Mp, = L;s

To find the optimal t, we need to optimize (a) subject to constraints (b) to (g).

®

EXAMPLE 1.6 MATERIAL BALANCE RECONCILIATION

Suppose the flow rates entering and leaving a process are measured periodically.
Determine the best value for stream A in kg/h for the process shown from the three
hourly measurements indicated of B and C in Figure E1.6, assuming steady-state
operation at a fixed operating point. The process model is

M, + M. = Mg (a)
where M is the mass per unit time of throughput.

Solution. We need to set up the objective function first. Let us minimize the sum of
the squares of the deviations between input and output as the criterion so that the
objective function becomes

fM,) = (M, + 11.1 — 92.4)* + (M, + 10.8 — 94.3)?
+ (M, + 11.4 — 93.8)? ®)

A sum of squares is used since this guarantees that f > 0 for all values of M,; a min-
imum at f = 0 implies no error. ;
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A ' B (a) 92.4 kg/h
z —————— (b)94.3 kg/h
(c) 93.8 kg/h
(a) 11.1 kg/h
C (b) 10.8 kg/h
(c) 11.4 kg/h
FIGURE E1.6

No equality constraints remain in the problem. Are there any inequality con-
straints? (Hint: What about M,?) The optimum value of M, can be found by differ-
entiating f with respect to M,; this leads to an optimum value for M, of 82.4 and is
the same result as that obtained by computing from the averaged measured values,
M, = Mz — M. Other methods of reconciling material (and energy) balances are
discussed by Romagnoli and Sanchez (1999).

1.6 'GENERAL PROCEDURE FOR SOLVING OPTIMIZATION
PROBLEMS

No single method or algorithm of optimization can be applied efficiently to all
problems. The method chosen for any particular case depends primarily on (1) the
character of the objective function and whether it is known explicitly, (2) the nature
of the constraints, and (3) the number of independent and dependent variables.

Table 1.1 lists the six general steps for the analysis and solution of optimiza-
tion problems. You do not have to follow the cited order exactly, but you should
cover all of the steps eventually. Shortcuts in the procedure are allowable, and the
easy steps can be performed first. Each of the steps will be examined in more detail

'in subsequent chapters.

Remember, the general objective in optimization is to choose a set of values of
the variables subject to the various constraints that produce the desired Optimum
response for the chosen objective function.

Steps 1, 2, and 3 deal with the mathematical definition of the problem, that is,
identification of variables, specification of the objective function, and statement of
the constraints. We devote considerable attention to problem formulation in the
remainder of this chapter, as well as in Chapters 2 and 3. If the process to be opti-
mized is very complex, it may be necessary to reformulate the problem so that it
can be solved with reasonable effort.

Step 4 suggests that the mathematical statement of the problem be simplified
as much as possible without losing the essence of the problem. First, you might



CHAPTER 1: The Nature and Organization of Optimization Problems 19

TABLE 1.1
The six steps used to solve optimization problems

1. Analyze the process itself so that the process variables and specific characteris- .
tics of interest are defined; that is, make a list of all of the variables.

2. Determine the criterion for optimization, and specify the objective function in
terms of the variables defined in step 1 together with coefficients. This step pro-
vides the performance model (sometimes called the economic model when
appropriate).

3. Using mathematical expressions, develop a valid process or equipment model
that relates the input—output variables of the process and associated coefficients.
Include both equality and inequality constraints. Use well-known physical prin-
ciples (mass balances, energy balances), empirical relations, implicit concepts,
and external restrictions. Identify the independent and dependent variables to get
the number of degrees of freedom.

4. If the problem formulation is too large in scope:

(a) break it up into manageable parts or
(b) simplify the objective function and model

5. Apply a suitable optimization technique to the mathematical statement of the
problem.

6. Check the answers, and examine the sensitivity of the result to changes in the

coefficients in the problem and the assumptions.

decide to ignore those variables that have an insignificant effect on the objective
function. This step can be done either ad hoc, based on engineering judgment, or
by performing a mathematical analysis and determining the weights that should be
assigned to each variable via simulation. Second, a variable that appears in a sim-
ple form within an equation can be eliminated; that is, it can be solved for explic-
itly and then eliminated from other equations, the inequalities, and the objective
function. Such variables are then deemed to be dependent variables.

As an example, in heat exchanger design, you might initially include the fol-
lowing variables in the problem: heat transfer surface, flow rates, number of shell
passes, number of tube passes, number and spacing of the baffles, length of the
exchanger, diameter of the tubes and shell, the approach temperature, and the pres-
sure drop. Which of the variables are independent and which are not? This question
can become quite complicated in a problem with many variables. You will find that
each problem has to be analyzed and treated as an individual case; generalizations
are difficult. Often the decision is quite arbitrary although instinct indicates that the
controllable variables be initially selected as the independent ones.

If an engineer is familiar with a particular heat exchanger system, he or she
might decide that certain variables can be ignored based on the notion of the con-
trolling or dominant heat transfer coefficient. In such a case only one of the flow-
ing streams is important in terms of calculating the heat transfer in the system, and
the engineer might decide, at least initially, to eliminate from consideration those
variables related to the other stream. |
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A third strategy can be carried out when the problem has many constraints and
many variables. We assume that some variables are fixed and let the remainder of
the variables represent degrees of freedom (independent variables) in the optimiza-
tion procedure. For example, the optimum pressure of a distillation column might
occur at the minimum pressure (as limited by condenser cooling).

Finally, analysis of the objective function may permit some simplification of
the problem. For example, if one product (A) from a plant is worth $30 per pound
and all other products from the plant are worth $5 or less per pound, then we might
initially decide to maximize the production of A only.

Step 5 in Table 1.1 involves the computation of the optimum point. Quite a few
techniques exist to obtain the optimal solution for a problem. We describe several
methods in detail later on. In general, the solution of most optimization problems
involves the use of a computer to obtain numerical answers. It is fair to state that
over the past 20 years, substantial progress has been made in developing efficient
and robust digital methods for optimization calculations. Much is known about
which methods are most successful, although comparisons of candidate methods
often are ad hoc, based on test cases of simple problems. Virtually all numerical
optimization methods involve iteration, and the effectiveness of a given technique
often depends on a good first guess as to the values of the variables at the optimal
solution.

The last entry in Table 1.1 involves checking the candidate solution to deter-
mine that it is indeed optimal. In some problems you can check that the sufficient
conditions for an optimum are satisfied. More often, an optimal solution may exist,
yet you cannot demonstrate that the sufficient conditions are satisfied. All you can
do is show by repetitive numerical calculations that the value of the objective func-
tion is superior to all known alternatives. A second consideration is the sensitivity
of the optimum to changes in parameters in the problem statement. A sensitivity
analysis for the objective function value is important and is illustrated as part of the
next example.

EXAMPLE 1.7 THE SIX STEPS OF OPTIMIZATION FOR A
MANUFACTURING PROBLEM

This example examines a simple problem in detail so that you can understand how to
execute the steps for optimization listed in Table 1.1. You also will see in this exam-
ple that optimization can give insight into the nature of optimal operations and how
optimal results might compare with the simple or arbitrary rules of thumb so often
used in practice. ‘
Suppose you are a chemical distributor who wishes to optimize the inventory of
a specialty chemical. You expect to sell Q barrels of this chemical over a given year
at a fixed price with demand spread evenly over the year. If 0 = 100,000 barrels
(units) per year, you must decide on a production schedule. Unsold production is kept
in inventory. To determine the optimal production schedule you must quantify those
aspects of the problem that are important from a cost viewpoint [Baumol (1972)].
Step 1. One option is to produce 100,000 units in one run at the beginning of the
year and allow the inventory to be reduced to zero at the end of the year (at which time
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another 100,000 units are manufactured). Another option is to make ten runs of
10,000 apiece. It is clear that much more money is tied up in inventory with the for-
_~ mer option than in the latter. Funds tied up in inventory are funds that could be
invested in other areas or placed in a savings account. You might therefore conclude
that it would be cheaper to make the product ten times a year.

However, if you extend this notion to an extreme and make 100,000 production
runs of one unit each (actually one unit every 315 seconds), the decision obviously is
impractical, since the cost of producing 100,000 units, one unit at a time, will be exor-
bitant. It therefore appears that the desired operating procedure lies somewhere in
between the two extremes. To arrive at some quantitative answer to this problem, first
define the three operating variables that appear to be important: number of units of
each run (D), the number of runs per year (), and the total number of units produced
per year (Q). Then you must obtain details about the costs of operations. In so doing,
a cost (objective) function and a mathematical model will be developed, as discussed
later on. After obtaining a cost model, any constraints on the variables are 1dent1ﬁed
which allows selection of independent and dependent variables.

Step 2. Let the business costs be split up into two categories: (1) the carrying cost
or the cost of inventory and (2) the cost of production. Let D be the number of units
produced in one run, and let Q (annual production level) be assigned a known value.
If the problem were posed so that a minimum level of inventory is specified, it would
not change the structure of the problem.

The cost of the inventory not only includes the cost of the money tied up in the
inventory, but also a storage cost, which is a function of the inventory size. Warehouse
space must exist to store all the units produced in one run. In the objective function, let
the cost of carrying the inventory be K;D, where the parameter K, essentially lumps
together the cost of working capital for the inventory itself and the storage costs.

Assume that the annual production cost in the objective function is proportional
to the number of production runs required. The cost per run is assumed to be a linear
function of D, given by the following equation:

Cost per run = K, + K;D _ (a)

The cost parameter K, is a setup cost and denotes a fixed cost of production—equip-
ment must be made ready, cleaned, and so on. The parameter Kj is an operating cost
parameter. The operating cost is assumed to be proportional to the number of units
manufactured. Equation (@) may be an unrealistic assumption because the incremen-
tal cost of manufacturing could decrease somewhat for large runs; consequently,
instead of a linear function, you might choose a nonlinear cost function of the form

Cost perrun = K, + K,D'/? (b)

as is shown in Figure E1.7. The effect of this alternative assumption will be discussed
later. The annual production cost can be found by multiplying either Equation (a) or
(b) by the number » of production runs per year.

The total annual manufacturing cost C for the product is the sum of the carrying
costs and the production costs, namely

C= KID + n(K2 + K3D) (C)

Step 3. The objective function in (c) is a function of two variables: D and n. How-
ever, D and n are directly related, namely n = Q/D. Therefore, only one independent
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run

K, -

0 D
Units produced per run

FIGURE E1.7
Nonlinear cost function for manufacturing.

variable exists for this problem, which we select to be D. The dependent variable is
therefore n. Eliminating »n from the objective function in (c) gives

K:Q

C=KD+ + K30 @

What other constraints exist in this problem? None are stated explicitly, but sev-
eral implicit constraints exist. One of the assumptions made in arriving at Equation
(c) is that over the course of one year, production runs of integer quantities may be
involved. Can D be treated as a continuous variable? Such a question is crucial prior
to using differential calculus to solve the problem. The occurrence of integer variables
in principle prevents the direct calculation of derivatives of functions of integer vari-
ables. In the simple example here, with D being the only variable and a large one, you
can treat D as continuous. After obtaining the optimal D, the practical value for D is
obtained by rounding up or down. There is no guarantee that n = Q/D is an integer;
however, as long as you operate from year to year there should be no restriction on 7.

What other constraints exist? You know that D must be positive. Do any equality
constraints relate D to the other known parameters of the model? If so, then the sole
degree of freedom in the process model could be eliminated and optimization would
not be needed!

Step 4. Not needed.

Step 5. Look at the total cost function, Equation (c). Observe that the cost func-
tion includes a constant term, K,Q. If the total cost function is differentiated, the term
K;Q vanishes and thus K, does not enter into the determination of the optimal value
for D. K;, however, contributes to the total cost.

Two approaches can be employed to solve for the optimal value of D: analytical
or numerical. A simple problem has been formulated so that an analytical solution can
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be obtained. Recall from calculus that if you differentiate the cost function with
respect to D and equate the total derivative to zero

dc K,Q
=K 0 @
you can obtain the optimal solution for D
K50
Dopt =
K, . (f),

Equation (f) was obtained without knowing specific numerical values for the param-
eters. If K|, K,, or Q change for one reason or another, then the calculation of the new
value of D°P is straightforward. Thus, the virtue of an analytical solution (versus a
numerical one) is apparent.

Suppose you are given values of K; = 1.0, K, = 10,000, K; = 4.0, and Q =
100,000. Then D°* from Equation (f) is 31,622.

You can also quickly verify for this problem that D°P* from Equation (f) mini-
mizes the objective function by taking the second derivative of C and showing that it
is positive. Equation (g) helps demonstrate the sufficient conditions for a minimum.

&C _ 20
dD* D3

>0 ®

Details concerning the necessary and sufficient conditions for minimization are pre-
sented in Chapter 4.

Another benefit of obtaining an analytical solution is that you can gain some
insight into how production should be scheduled. For example, suppose the optimum
number of production runs per year was 4.0 (25,000 units per run), and the projected
demand for the product was doubled (Q = 200,000) for the next year. Using intuition
you might decide to double the number of units produced (50,000 units) with 4.0 runs
per year. However, as can be seen from the analytical solution, the new value of D
should be selected according to the square root of Q rather than the first power of Q.
This relationship is known as the economic order quantity in inventory control and
demonstrates some of the pitfalls that may result from making decisions by simple
analogies or intuition.

We mentioned earlier that this problem was purposely designed so that an ana-
lytical solution could be obtained. Suppose now that the cost per run follows a non-
linear function such as shown earlier in Figure E1.7. Let the cost vary as given by
Equation (b), thus allowing for some economy of scale. Then the total cost function
becomes

K,Q  KQ

C=K1D+T+W h)

After differentiation and equating the derivative to zero, you get

dC _ K0 KQ _ | :
D K7 55 =0 | ®

Note that Equation (i) is a rather complicated polynomial that cannot explicitly be
solved for D°P; you have to resort to a numerical solution as discussed in Chapter 5.
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A dichotomy arises in attempting to minimize function (k). You can either (1)
minimize the cost function (k) directly or (2) find the roots of Equation (i). Which is
the best procedure? In general it is easier to minimize C directly by a numerical
method rather than take the derivative of C, equate it to zero, and solve the resulting
nonlinear equation. This guideline also applies to functions of several variables.

The second derivative of Equation (k) is

d°C _ 2K,0 | 3K,Q
dD?> D3 ' 4p%?

)

A numerical procedure to obtain D°* directly from Equation (d) could also have been
carried out by simply choosing values of D and computing the corresponding values
of C from Equation (d) (K; = 1.0; K, = 10,000; K; = 4.0; Q = 100,000).

DX10‘3] 10|20|30|40|50|60|70|80|90|100
cx10 | 510 | 470 | 463 | 465 | 470 | 477 | 484 | 492 | s01 | s10

From the listed numerical data you can see that the function has a single minimum in
the vicinity of D = 20,000 to 40,000. Subsequent calculations in this range (on a finer
scale) for D will yield a more precise value for D°P'.

Observe that the objective function value for 20 = D = 60 does not vary sig-
nificantly. However, not all functions behave like C in Equation (d)—some exhibit
sharp changes in the objective function near the optimum.

Step 6. You should always be aware of the sensitivity of the optimal answer, that
1s, how much the optimal value of C changes when a variable such as D changes or a
coefficient in the objective function changes. Parameter values usually contain errors

- or uncertainties. Information concerning the sensitivity of the optimum to changes or

variations in a parameter is therefore very important in optimal process design. For
some problems, a sensitivity analysis can be carried out analytically, but in others the
sensitivity coefficients must be determined numerically.

In this example problem, we can analytically calculate the changes in C° in
Equation (d) with respect to changes in the various cost parameters. Substitute D
from Equation (f) into the total cost function

C™ =2VKK,Q + K0 (k)
Next, take the partial derivatives of C°?* with respect to K, K,, K3, and Q
aCOpl K Q .
=\ )
oK, K,
aCopt K Q
=\ (12)
R aCOpt
oK, g A (3)

dC! KK,
= +K 14
o -\ o tK | (14)
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Equations (/1) through (/4) are absolute sensitivity coefficients.
Similarly, we can develop expressions for the sensitivity of D°P;

D? =7 f)

ok, 2K\ K, (m1)
ap® 1 [KQ ,
3k, 2K\ K, (m2)
aD°P
=0

ra (m3)
ap* 1 [K

2Q (md)

Q0 2Q

Suppose we now substitute numerical values for the constants in order to clarify how
these sensitivity functions might be used. For

Q = 100,000 K; =10 K, = 10,000 K; =40

then
D = 31,622
opt t 109
CP' = D+~ + 400,000 = $463,240
acopt aDopt
K = 31,620 3K = —15,810
1 1
acopt ‘ aDopt
oK = 3.162 K = 1.581
2 2
oc D
= 100,000 =0
9K, | 0K,
aC™ oD
20 = 4316 20 = 0.158

What can we conclude from the preceding numerical values? It appears that DP*
is extremely Sensitive to K, but not to Q. However, you must realize that a one-unit
change in Q (100,000) is quite different from a one-unit change in K (0.5). Therefore,
in order to put the sensitivities on a more meaningful basis, you should compute the
relative sensitivities: for example, the relative sensitivity of C°* to K is

ACP/C®  3InC K,Q K, 31,622(1.0
s = 2CT/CT _men | KQ L (19) _ 40683 (n)
T KK, oKk, K, C™ 463240
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Application of the preceding idea for the other variables yields the other relative sen-
sitivities for C°P*. Numerical values are

S = 0.863
S¢ = 00683 S§=0932

Changes in the parameters Q and K; have the largest relative influence on C, sig-
nificantly more than K, or K,. The relative sensitivities for D°"* are

S2=-05 $2=850=05 S2=0

so that all the parameters except for K; have the same influence (in terms of absolute
value of fractional changes) on the optimum value of D.

For a problem for which we cannot obtain an analytical solution, you need to
determine sensitivities numerically. You compute (1) the cost for the base case, that
is, for a specified value of a parameter; (2) change each parameter separately (one at
a time) by some arbitrarily small value, such as plus 1 percent or 10 percent, and then
calculate the new cost. You might repeat the procedure for minus 1 percent or 10 per-
cent. The variation of the parameter, of course, can be made arbitrarily small to
approximate a differential; however, when the change approaches an infinitesimal
value, the numerical error engendered may confound the calculations.

1.7 OBSTACLES TO OPTIMIZATION

If the objective function and constraints in an optimization problem are “nicely
behaved,” optimization presents no great difficulty. In particular, if the objective
function and constraints are all linear, a powerful method known as linear pro-
gramming can be used to solve the optimization problem (refer to Chapter 7). For
this specific type of problem it is known that a unique solution exists if any solu-
tion exists. However, most optimization problems in their natural formulation are
not linear.

To make it possible to work with the relative simplicity of a linear problem, we
often modify the mathematical description of the physical process so that it fits the
available method of solution. Many persons employing computer codes for opti-
mization do not fully appreciate the relation between the original problem and the
problem being solved; the computer shows its neatly printed output with an author-
ity that the reader feels unwilling, or unable, to question.

In this text we will discuss optimization problems based on behavior of physi-
cal systems that have a complicated objective function or constraints: for these
problems some optimization procedures may be inappropriate and sometimes mis-
leading. Often optimization problems exhibit one or more of the following charac-
teristics, causing a failure in the calculation of the desired optimal solution:

1. The objective function or the constraint functions may have finite discontinuities
in the continuous parameter values. For example, the price of a compressor or
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heat exchanger may not change continuously as a function of variables such as
size, pressure, temperature, and so on. Consequently, increasing the level of a
parameter in some ranges has no effect on cost, whereas in other ranges a jump
in cost occurs.

2. The objective function or the constraint functions may be nonlinear functions of
the variables. When considering real process equipment, the existence of truly
linear behavior and system behavior is somewhat of a rarity. This does not pre-
clude the use of linear approximations, but the results of such approximations
must be interpreted with considerable care.

3. The objective function or the constraint functions may be defined in terms of
complicated interactions of the variables. A familiar case of interaction is the
temperature and pressure dependence in the design of pressure vessels. For
example, if the objective function is given as f = 15.5x,x,!2, the interaction
between x; and x, precludes the determination of unique values of x; and x,.
Many other more complicated and subtle interactions are common in engineer-
ing systems. The interaction prevents calculation of unique values of the vari-
ables at the optimum. - ,

4. The objective function or the constraint functions may exhibit nearly “flat”
behavior for some ranges of variables or exponential behavior for other ranges.
This means that the value of the objective function or a constraint is not sensi-
tive or is very sensitive, respectively, to changes in the value of the variables.

5. The objective function may exhibit many local optima, whereas the global opti-
mum is sought. A solution to the optimization problem may be obtained that is
less satisfactory than another solution elsewhere in the region. The better solu-
tion may be reached only by initiating the search for the optimum from a differ-
ent starting point.

In subsequent chapters we will examine these obstacles and discuss some ways
of mitigating such difficulties in performing optimization, but you should be aware
these difficulties cannot always be alleviated.
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PROBLEMS

For each of the following six problems, formulate the objective function, the equality con-
 straints (if any), and the inequality constraints (if any). Specify and list the independent vari-
ables, the number of degrees of freedom, and the coefficients in the optimization problem.
Solve the problem using calculus as needed, and state the complete optimal solution values.

1.1 A poster is to contain 300 cm? of printed matter with margins of 6 cm at the top and
bottom and 4 cm at ea;.;h side. Find the overall dimensions that minimize the total area
. of the poster.

1.2 A box with a square base and open top is to hold 1000 cm?. Find the dimensions that
require the least material (assume uniform thickness of material) to construct the box.

1.3 Find the area of the largest rectangle with its lower base on the x axis and whose cor-
ners are bounded at the top by the curve y = 10 — x%.

14 'Tbtee points x are selected 3 distance h apart (g, X + h, x4 + 2h), with corresponding
values f, f;, and f;. Find the ‘maximum or minimum attained by a quadratic function
passing through all three points. Hint: Find the coefficients of the quadratic function

- first.

1.5 Find the point on the curve f = 2x? + 3x + 1 nearest the origin.

1.6 Fmd the volume of the largest right circular cylinder that can be inscribed inside a
" sphere of radius R.

1.7 Ina particular process the value of the-product f(x) is a function of the concentration x
of ammonia expressed as a mole fraction. The following figure shows several values

TN\

FIGURE P1.7
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of fix). No units or values are designated for either of the axes. Duplicate the ﬁgure
and insert on the duplicate the constraint(s) involved in the problem by drawing very

- heavy lines or curves on the diagram.

A trucking company has borrowed $600,000 for new equipment and is contemplating
three kinds of trucks. Truck A costs $10,000, truck B $20,000, and truck C $23,000.
How many trucks of each kind should be ordered to obtain the greatest capacity in ton-
miles per day based on the following data?

Truck A requires one driver per day and produces 2100 ton-miles per day.
Truck B requires two drivers per day and produces 3600 ton-miles per day.
Truck C requires two drivers per day and produces 3780 ton-miles per day:
There is a limit of 30 trucks and 145 drivers.

Formulate a complete mathematical statement of the problem, and label each indi-
vidual part, identifying the objective function and constraints with the correct units (3,
days, etc.). Make a list of the variables by names and symbol plus units. Do not solve.

In a rough preliminary design for a waste treatment plant the cost of the components

~ -are as follows (in order of operation)

1. Primary clarifier: $19.4 x4
2. Trickling filter: $16.8 x, Sl
3. Activated sludge unit:  $91.5 x; %%

where the x’s are the fraction of the 5-day biochemical oxygen demand (BOD) exiting
each respective unit in the process, that is, the exit concentrations of material to be
removed.

~ The required removal in each unit should be adjusted so that the final exit con-
centration x; must be less than 0.05. Formulate (only) the optimization problem llstmg
the objective function and constraints.

X0 X1 X2 X3
e 1 2 "3 —>

FIGURE P1.9

1.10 Examine the following optimization problem. State the total number of variables, and .

list them. State the number of independent variables, and list a set.
Minimize: f(x) = 4x, — x5 — 12

Subject to: 25—-x}-x3=0

10x, — x2+ 10x, —x3 — 34 =0

(=3 + (= 1)*=0

X% =0
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V1, 91 . Vz, 92 V3, 93 V4, 94

FIGURE PL.11

1.11 A series of four well-mixed reactors operate isothermally in the steady state. Examine
the figure. All the tanks do not have the same volume, but the sum of V; = 20 m3. The
component whose concentration is designated by C reacts according to the following
mechanism: r = —kC" in each tank.

Determine the values of the tank volumes (really residence times of the compo-
néent) in each of the four tanks for steady-state operation with a fixed fluid flow rate of
g so as to maximize the yield of product C,. Note (V,/g,) = 0, the residence time. Use
the following data for the coefficients in the problem

n=25 k = 0.00625 [m®/(kg mol)]~5(s) !
Gy =20kgmol/m’ g=7lm’h
The units for k are fixed by the constant 0.00625.

List:

1. The objective function

2. The variables

3, The equality constraints
4. The inequality constraints

What are the independent‘vaﬁables? The dependent variables? Do not solve the
problem, just set it up so it can be solved.

1.12 A certain gas contains moisture, which you need to remove by compression and cool-
ing so that the gas will finally contain not more than 1% m01sture (by volume). If the
cost & the compression equipment is

‘Costin $ = (pressure in psi)'*
and the cost of the cooliflg equipment is
Costin $ = (350 — temperature in kelvin)'?
what is the best temperature to use?

Define the objective function, the independent and the dependent variables, and
the constraints first. Then set this problem up, and list all of the steps to solve it. You
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do not have to solve the final (nonlinear) equations you derive for T. Hint: The vapor
pressure of water (p*) is related to the temperature T in °C by Antoine’s equation:

1750.286

log;o p* = 8.10765 — —r=>
ogop* = 8.10765 — o

1.13 The following problem is formulated as an optimizatioh problem. A batch reactor
operating over a 1-h period produces two products according to the parallel reaction
mechanism: A — B, A — C. Both reactions are irreversible and first order in A and

have rate constants given by

ki = kyexp {E/RT} i=12

where ko = 10%/s
kyp = 5.101Y/s
~ E; = 10,000 cal/gmol
E, = 20,000 cal/gmol

The objective is to find the temperature—time profile that maximizes the yield of B for
operating temperatures below 282°F. The optimal control problem is therefore

Maximize: B(1.0)

dA
Subject to: i —(ky + ky)A

By
A(0) = A
B(0) = 0

T =< 282°F

(a) What are the independent variables in the problem?

(b) What are the dependent variables in the problem?

(c) What are the equality constraints?

{d) What are the inequality constraints?

(e) What procedure would you recommend to solve the problem?

1.14 The computation of chemical equilibria can be posed as an optimization problem with
linear side conditions. For any infinitesimal process in which the amounts of species
present may be changed by either the transfer of species to or from a phase or by chem-
ical reaction, the change in the Gibbs free energy is

dG = SdT + Vdp + 3 p;dn, | (1)
Here G, S, T, and p are the Gibbs free energy, the entropy, the temperature, and the

(total) pressure, respectively. The partial molal free energy of species number i is u,,
and n; is the number of moles of species number i in the system. If it is assumed.that
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the temperature and pressure are held constant during the process, dT and dp both van-
ish. If we now make changes in the n; such that dn; = dkn;, so that the changes in the
n; are in the same proportion k, then, since G is an extensive quantity, we must have
dG = dkG. This implies that

G= Zﬂini 2)

Comparison of Equations (1) and (2) shows that the chemical potentials are inten-
sive quantities, that is, they do not depend on the amount of each species, because if
all the n, are increased in the same proportion at constant 7 and p, the u; must remain
unchanged for G to increase in the same rate as the n,. This invariance property of the
W; is of the utmost importance in restricting the possible forms that the u; may take.

Equation (2) expresses the Gibbs free energy in terms of the mole numbers n,,
which appear both explicitly and implicitly (in the u,) on the right-hand side. The
Gibbs free energy is a minimum when the system is at equilibrium. The basic prob-
lem, then, becomes that of finding that set of n; that makes G a minimum.

(a) Formulate in symbols the optimization problem using the previous notation with n*
being the number of moles of the compounds at equilibrium and M the number of
elements present in the system. The initial number of moles of each compound is
presumed to be known.

(b) Introduce into the preceding formulation the quantities needed to solve the follow-
ing problem: :

Calculate the fraction of steam that is decomposed in the water—gas shift reaction

CO(g) + Hy0(g) === COy(g) + Hy(g) |

at T = 1530°F and p = 10 atm starting with 1 mol of H,O and 1 mol of CO. Assume
the mixture is an ideal gas. Do not solve the problem.

Hints: You can find (from a thermodynamlcs book) that the chemical potentlal can
be written as

’LI=IL;+RTlnp +RTlnx,=,u,,°+RTlnp, (3)
where x, = mole fraction of a compound in the gas phase
- Pi = pX
M?,T = (AGY);

—(AGY) = RTn K,, with K, being the equilibrium constant for the reaction.

1.15 For a two-stage adiabatic compressor where the gas is cooled to the inlet gas temper-

ature between stages, the theoretical work is given by

kp.V. (k= 1)k (k= 1)/k
) ()]
k—l pl : p2 )

where k = C/C,
p, = inlet pressure
p, = intermediate stage pressure
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p; = outlet pressure
V, = inlet volume

'We wish to optimize the intermediate pressure p, so that the work is a minimum. Show
that if p, = 1 atm and p; = 4 atm, ps** = 2 atm.

1.16 You are the manufacturer of PCl;, which you'sell in barrels at a rate of P barrels per
day. The cost per barrel produced is '

C=50+0.1P + @OO/P in dollars /barrel

For example, for P = 100 baﬁels/day, C = $150/barrel. The selling price per barrel is
$300. Determine -

(a) The production level giving the minimum cost per barrel.
(b) The production level which maximizes the profit per day.
(c) The production level at zero profit..

(d) Why are the answers in (a) and (b) different?

1.17 Ttis desired to cool a gas [C, = 0.3 Btw/(Ib)(°F)] from 195 to 90°F, using cooling water
at 80°F. Water costs $0.20/ 1000 ft3, and the annual fixed charges for the exchanger are
$0.50/ft? of inside surface, with a diameter of 0.0875 ft. The heat transfer coefficient
is U = 8 Btu/(h)(ft?)(°F) for a gas rate of 3000 Ib/h. Plot the annual cost of cooling
water and fixed charges for the exchanger as a- functlon of the outlet water tempera-

- ture. What is the minimum total cost? How would you formulate the problem to obtain
a more meanmgful result? Hinr: Which variable is the manipulated variable?

1.18 The total cost (in dollars per year) for pipeline installation and operation for an incom-
pressible fluid can be expressed as follows:

C =C,D". L+C2mAp/p

where C; = the installed cost of the pipe per foot of length computed on an annual
basis (C,D'? is expressed in dollars per year per foot length, C, is
based on $0.05/kWh, 365 days/year and 60 percent pump efficiency).
D = diameter (to be optimized)
L = pipeline length = 100 miles
m = mass flow rate = 200,000 1b/h
Ap = 2 pv’LI(Dg,) - f = pressure drop, psi
_p = density = 60 Ib/ft3
v = velocity = (4dm)/(pwD?)
f = friction factor = (0.046u%2)/(D%2 102 p02)
Q= viscosity = 1 cP

(a) Find general expressions for D°P', v°P', and C°P',
(b) For C; = 0.3 (D expressed in inches for installed cost), calculate D°®* and v*?* for
the following pairs of values of u and p (watch your units!)

u=0.2cP, 1cP,10cP

p = 50 Ib/ft,601b/ft>, 801b/ft>
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1.19 Calculate the relative sensitivities of D°?* and C° in Problem 1.18 to changes in p, u,

m, and C, (cost of electricity). Use the base case parameters as given in Problem 1.18,
with C, = 0.3.

Pose each of the following problems as an optimization problem. Include all of the features
. mentioned in connection with the first four steps of Table 1.1, but do not solve the problem.

1.20 A chemical manufacturing firm has discontinued production of a certain unprofitable

product line. This has created considerable excess production capacity on the three
existing batch production facilities that operate separately. Management is considering
devoting this excess capacity to one or more of three new products; call them products
1, 2, and 3. The available capacity on the existing units which might limit output is
summarized in the following table:

Available time

Unit (h/week)
A 20
B 10
C 5

Each of the three new products requires the following processing time for com--

pletion:
Productivity (h/batch)
Unit Product 1 Product 2 Product 3
A 0.8 0.2 0.3
B 04 0.3 —
C 0.2 — 0.1

1.21

The sales department indicates that the sales potential for products 1 and 2
exceeds the maximum production rate and that the sales potential for product 3 is 20
batches per week. The profit per batch would be $20, $6, and $8, respectlvely, on prod-
ucts 1, 2, and 3.

How much of each product should be produced to maximize profits of the com-
pany? Formulate the objective function and constraints, but do not solve.

You are asked to design an efficient treatment system for runoff from rainfall in an eth-
ylene plant. The accompanying figure gives the general scheme to be used.

The rainfall frequency data for each recurrence interval fits an empirical equation
in the form of

R =a+ b(t)?

where R = cumulative inches of rain during time ¢
t = time, h
a and b = constants that have to be determined by fitting the observed rainfall data

Four assumptions should be made:

1. The basin is empty at the beginning of the maximum intensity rain.
2. As soon as water starts to accumulate in the basin, the treatment system is started
and water is pumped out of the basin. '
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FIGURE P1.21

3. Stormwater is assumed to enter the basin as soon as it falls. (This is normally a
good assumption since the rate at which water enters the basin is small relative to
the rate at which it leaves the basin during a maximum intensity rain.)

4. All the rainfall becomes runoff.

The basin must not overflow so that any amount of water that would cause the
basin to overflow must be pumped out and treated. What is the minimum pumping rate
P required?

Other notation: ~ Q = Volumetric flow rate of water entering basin
P = Volumetric treatment rate in processing plant

1.22 Optimization of a distributed parameter system can be posed in various ways. An

example is a packed, tubular reactor with radial diffusion. Assume a single reversible
reaction takes place. To set up the problem as a nonlinear programming problem, write
the appropriate balances (constraints) including initial and boundary conditions using
the following notation:

x = Extent of reaction t = Time
T = Dimensions temperature ~ r = Dimensionless radial coordinate

Do the differential equations have to be expressed in the form of analytical solutions?

The objective function is to maximize the total conversion in the effluent from the
reactor over the cross-sectional area at any instant of time. Keep in mind that the heat
flux through the wall is subject to physical bounds.

1.23 Calculate a new expression for D if f = 0.005 (rough pipe), independent of the
Reynolds number. Compare your results with these from Problem 1.18 for u = 1 cP
and p = 60 Ib/ft>.

1.24 A shell-and-tube heat exchanger has a total cost of C = $7000 + $250 D>°L +

$200 DL, where D is the diameter (ft) and L is the length ‘(ft). What is the absolute and
the relative sensitivity of the total cost with respect to the diameter?
If an inequality constraint exists for the heat exchanger

DZ
20("—4—)L > 300

how must the sensitivity calculation be modified?
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1.25 Empirical cost correlations for equipment are often of the following form:
InC = ay + a;In S + a,(InS)?

where C is the base cost per unit and S is the size per unit. Obtain an analytical expres-
sion for the minimum cost in terms of §, and, if possible, find the expression that gives
the value of S at the minimum cost. Also write down an analytical expression for the
relative sensitivity of C with respect to S.

1.26 What are three major difficulties experienced in formulating optimization problems?
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CONSTRAINTS IN OPTIMIZATION arise because a process must describe the physi-
cal bounds on the variables, empirical relations, and physical laws that apply to a
specific problem, as mentioned in Section 1.4. How to develop models that take
into account these constraints is the main focus of this chapter. Mathematical mod-
els are employed in all areas of science, engineering, and business to solve prob-
lems, design equipment, interpret data, and communicate information. Eykhoff
(1974) defined a mathematical model as “a representation of the essential aspects
of an existing system (or a system to be constructed) which presents knowledge of
that system in a usable form.” For the purpose of optimization, we shall be con-
cerned with developing quantitative expressions that will enable us to use mathe-
matics and computer calculations to extract useful information. To optimize a
process models may need to be developed for the objective function f, equality con-
straints g, and inequality constraints h.

A Because a model is an abstraction, modeling allows us to avoid repetitive
experimentation and measurements. Bear in mind, however, that a model only imi-
tates reality and cannot incorporate all features of the real process being modeled.
In the development of a model, you must decide what factors are relevant and how
complex the model should be. For example, consider the following questions.

1. Should the process be modeled on a fundamental or empirical level, and what
level of effort (time, expenses, manpower) is required for either approach?

2. Can the process be described adequately using physical principles?

3. What is the desired accuracy of the model, and how does its accuracy influence
its ultimate use?

4. What measurements are available, and what data are available for model verifi-
cation? .

5. Is the process actually composed of smaller, simpler subsystems that can be more
easily analyzed?

The answers to these questions depend on how the model is used. As the model of
the process becomes more complex, optimization usually becomes more difficult.

In this chapter we will discuss several factors that need to be considered when
constructing a process model. In addition, we will examine the use of optimization
in estimating the values of unknown coefficients in models to yield a compact and
reasonable representation of process data. Additional information can be found in
textbooks specializing in mathematical modeling. To illustrate the need to develop
models for optimization, consider the following example.

EXAMPLE 2.1 MODELING AND OPTIMIZING BLAST
FURNACE OPERATION

Optimizing the operation of the blast furnace is important in every large-scale steel mill.
A relatively large number of important variables (several of which cannot be measured)
interact in this process in a highly complex manner, numerous constraints must be taken
into account, and the age and efficiency of the plant significantly affect the optimum
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operating point (Deitz, 1997). Consequently, a detailed examination of this problem
demonstrates the considerations involved in mathematical modeling of a typical process.
_ The operation of a blast furnace is semicontinuous. The raw materials are iron

ore containing roughly 20 to 60 percent iron as oxides and a variety of other metallic
and nonmetallic oxides. These materials are combined with coke, which reacts to
form blast furnace gas. Limestone is a flux that helps separate the impurities from the
hot metal by influencing the pH. Apart from the blast furnace gas, which may serve
as a heating medium in other processes, the output of the furnace consists of molten
iron, which includes some impurities (notably carbon and phosphorus) that must be
removed in the steelmaking process, and slag, which contains most of the impurities
and is of little value. Operation of the blast furnace calls for determination of the
amount of each ore, a production rate, and a mode of operation that will maximize the
difference between the product value and the cost of producing the required quantity
and quality of molten iron. Figure E2.1 shows the flow of materials in the blast fur-
nace, which itself is part of a much larger mill. One ton of hot metal requires about
1.7 tons of iron-bearing materials, 0.5 to 0.65 tons of coke and other fuel, 0.25 tons
of fluxes, and 1.8 to 2.0 tons of air. In addition, for each ton of hot metal produced,
the process creates 0.2 to 0.4 tons of slag, 0.05 tons or less of flue dust, and 2.5 to 3.5
tons of blast furnace gases. The final product, hot metal, is about 93% iron, with other
trace ingredients, including sulfur, silicon, phosphorus, and manganese. The process
variables and conceptual models are identified in Figure E2.1 under the column
“Process Analysis,” which has categories for the objective function, equality con-
straints, and inequality constraints.

Objective function
To formulate the objective function, two categories of costs have to be considered:

1. Costs associated with the material flows (the input and output variables), such as
the costs of purchased materials.
2. Costs associated with the operations related to the process variables in the model.

The terms that make up the objective function (to be maximized) are shown in Figure
E.2.1. The profit of the blast furnace can be expressed as

. 8 6
f= ECixi - ECixi
i=7 i=1

Equality and inequality constraints

The next step in formulating the problem is to construct a mathematical model of the
process by considering the fundamental chemical and physical phenomena and phys-
ical limitations that influence the process behavior. For the case of the blast furnace,
typical features are

1. Iron ore: Ores of different grades are available in restricted quantities. Different
ores have varying percentages of iron and different types and amounts of impu-
rities. The proportion of each ore that occurs in the final hot metal is assumed
to be fixed by its composition. For example, the amount of fine ore must be lim-
ited because too much can disrupt the flow of gas through the furnace and limit
production. '

2. Coke: The amount of coke that may be burned in any furnace is effectively limited
by the furnace design, and the hot metal temperature is controlled by the amount
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Process Process Analysis

Objective Function Components

Coke B —> Limestone .
Associated Costs and Revenues:
Coke A Blast Ore 1: x; material cost ¢y
oxe 5 I | > furnace | Ore 2: x, material cost ¢;
gas Ore 3: x3 material cost c3
Ore 1 Cast iron scrap: x4 mater%al cost ¢4
— Coke A: x5 material cost c5
Coke B: x¢ material cg
Pigiron: x; sales price ¢7

Ore 2 N
Blast furnace gas: xg  assigned value: cg

Ore 3 Constraints
Equalities

Material and Energy Balances:

Cast iron Metal (iron) balance
scrap : Slag balance
' Carbon balance

- Gas balance

I Elemental balances (O, H, S, Si, Al,

) Ca, Mg, P, Tj, K, Cu, Mo, Mn, etc.)

Air Energy balance
Slag — L Plg Inequalites
iron

Process Limits:

Coke throughput

Hot metal production rate
Slag volume

Ore availability

Elements in slag
Elements in metal
Basicity

Sales limits

FIGURE E.2.1
Objective function components and types of constraints for a blast furnace.

of coke (or carbon). The coke consumption rate can be based on empirical rela-
tionships developed through regression of furnace data.

3. Slag: For technical reasons, the level of impurities in the slag must be controlled.
There is an upper limit on the percentage of magnesium, upper and lower limits on
the percentage of silicon and aluminum, and close limits on the “basicity” ratio
(CaO + MgO)/(SiO, + A1,0,). The basicity ratio controls the viscosity and melt-
ing point of the slag, which in turn affect the hearth temperature and grade of iron
produced.
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The basicity ratio can be expressed in terms of the blast furnace feeds x; as follows:

4 4
2W2ixi + 2w3ixi
i=1
4
wyx; + EWSixi
i=1

W M NN
) -

where w,; = weight fraction of CaO in feed i
w,; = weight fraction of MgO in feed i
wy; = weight fraction of SiO, in feed i
ws; = weight fraction of A1,0; in feed i

4. Phosphorus: All phosphorus in the raw material finds its way into the molten
metal. There is an upper limit on the phosphorus permitted, although precise quan-
tities are sometimes prescribed. In general, it is cheaper to produce higher phos-
phorus iron, but more expensive to refine it.

From these and other considerations you can prepare:

A set of input and output variables.

A set of steady-state input—output material and energy balances (equality constraints).
A set of explicit empirical relations (equality constraints).

A set of restrictions (inequality constraints) on the input and output variables as
indicated in Figure E.2.1.

a2 .

2.1 CLASSIFICATION OF MODELS
Two general categories of models exist: _

1. Those based on physical theory. v
2. Those based on strictly empirical descriptions (so-called black box models).

Mathematical models based on physical and chemical laws (e.g., mass and energy
balances, thermodynamics, chemical reaction kinetics) are frequently employed in
optimization applications (refer to the examples in Chapters 11 through 16). These
models are conceptually attractive because a general model for any system size can
be developed even before the system is constructed. A detailed exposition of fun-
damental mathematical models in chemical engineering is beyond our scope here,
although we present numerous examples of physiochemical models throughout the
book, especially in Chapters 11 to 16. Empirical models, on the other hand, are
attractive when a physical model cannot be developed due to limited time or
resources. Input—output data are necessary in order to fit unknown coefficients in
either type of the model.
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FIGURE E2.2

ESP collection efficiency versus specific collection area for a linear
model n = 0.129A4 + 85.7 and a nonlinear model n = 100{1 —
[e7002644/(4.082 — 3.15 X 1076 A)]}.

EXAMPLE 2.2 MODELS OF AN ELECTROSTATIC
PRECIPITATOR

A coal combustion pilot plant is used to obtain efficiency data on the collection of par-
ticulate matter by an electrostatics precipitator (ESP). The ESP performance is varied
by changing the surface area of the collecting plates. Figure E2.2 shows the data col-
lected to estimate the coefficients in a model to represent efficiency 7 as a function of
the specific collection area A, measured as plate area/volumetric flow rate.

Two models of different complexity have been proposed to fit the performance data:

Modell: n=bA + b,

e"YlA
Model2: n=100|1 — ———
Y2 t vA

Model 1 is linear in the coefficients, and model 2 is nonlinear in the coefficients. The
mathematical structure of model 2 has a fundamental basis that takes into account the
physical characteristics of the particulate matter, including particle size and electrical
properties, but we do not have the space to derive the equation here.

Which model is better?
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Solution. The coefficients in the two models were fitted using MATLAB, yielding
the following results:
Model 1: b, = 0.129 b, = 85.7

Model 2: 7y, = 0.0264 1y, = 4.082 vy, = —0.00000315

As can be seen in Figure E2.2, model 2 provides a better fit than model 1 over the
range of areas A considered, but model 2 may present some difficulties when used as
a constraint inserted into an optimization code.

The electrostatic precipitator in Example 2.2 is typical of industrial processes;
the operation of most process equipment is so complicated that application of fun-
damental physical laws may not produce a suitable model. For example, thermo-
dynamic or chemical kinetics data may be required in such a model but may not be
available. On the other hand, although the development of black box models may
require less effort and the resulting models may be simpler in form, empirical mod-
els are usually only relevant for restricted ranges of operation and scale-up. Thus,
a model such as ESP model 1 might need to be completely reformulated for a dif-
ferent size range of particulate matter or for a different type of coal. You might have
to use a series of black box models to achieve suitable accuracy for different oper-
ating conditions.

In addition to classifying models as theoretically based versus empirical, we
can generally group models according to the following types:

Linear versus nonlinear.

Steady state versus unsteady state.

Lumped parameter versus distributed parameter.
Continuous versus discrete variables.

Linear versus nonlinear

Linear models exhibit the important property of superposition; nonlinear ones
do not. Equations (and hence models) are linear if the dependent variables or their
derivatives appear only to the first power: otherwise they are nonlinear. In practice
the ability to use linear models is of great significance because they are an order of
magnitude easier to manipulate and solve than nonlinear ones.

To test for the linearity of a model, examine the equation(s) that represents the
process. If any one term is nonlinear, the model itself is nonlinear. By implication,
the process is nonlinear.

Examine models 1 and 2 for the electrostatic precipitator. Is model 1 linear in
A? Model 2? The superposition test in each case is: Does

J(axl + bxz) = aJ(xl) + bJ(xz) (2.1(1)
and
Jkx) = kJ(x) | (2.1b)
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where J = any operator contained in the model such as square, differentiation,
and so on.
k = a constant

x, and x, = variables

ESP model 1 is linear in A

but ESP model 2 is nonlinear because
e_71(A1 + Ay) e_)'lAl e_‘hAz
( )+ (m) * )
Y. + vi(A; + Ay) Y2 T viA, v, t viA,

Steady state versus unsteady state

Other synonyms for steady state are time-invariant, static, or stationary. These
terms refer to a process in which the values of the dependent variables remain con-
stant with respect to time. Unsteady state processes are also called nonsteady state,
transient, or dynamic and represent the situation when the process-dependent vari-
ables change with time. A typical example of an unsteady state process is the oper-
ation of a batch distillation column, which would exhibit a time-varying product
composition. A transient model reduces to a steady state model when d/dr = O.
Most optimization problems treated in this book are based on steady state models.
Optimization problems involving dynamic models usually pertain to “optimal con-
trol”” or real-time optimization problems (see Chapter 16) o

Distributed versus lumped parameters

Briefly, a lumped parameter representation means that spatial variations are
ignored and that the various properties and the state of the system can be consid-
ered homogeneous throughout the entire volume. A distributed parameter repre-
sentation, on the other hand, takes into account detailed variations in behavior from
point to point throughout the system. In Figure 2.1, compare these definitions for a
well-stirred reactor and a tubular reactor with axial flow. In the first case, we
assume that mixing is complete so no concentration or temperature gradient occurs
in the reactor, hence a lumped parameter mathematical model would be appropri-
ate. In contrast, the tubular reactor has concentration or temperature variations
along the axial direction and perhaps in the radial direction, hence a distributed
parameter model would be required. All real systems are, of course, distributed
because some variations of states occur throughout them. Because the spatial vari-
ations often are relatively small, they may be ignored, leading to a lumped approx-
imation. If both spatial and transient characteristics are to be included in a model,
a partial differential equation or a series of stages is required to describe the process
behavior. :

It is not easy to determine whether lumping in a process model is a valid tech-
nique for representing the process. A good rule of thumb is that if the response is
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essentially the same at all points in the process, then the model can be lumped as a
single unit. If the response shows significant instantaneous differences in any direc-
tion.along the vessel, then the problem should be treated using an appropriate dif-
ferential equation or series of compartments. In an optimization problem it is desir-
able to simplify a distributed model by using an equivalent lumped parameter
system, although you must be careful to avoid masking the salient features of the
distributed element (hence building an inadequate model). In this text, we will
mainly consider optimization techniques applied to lumped systems.

Continuous versus discrete variables

Continuous variables can assume any value within an interval; discrete vari-
ables can take only distinct values. An example of a discrete variable is one that
assumes integer values only. Often in chemical engineering discrete variables and
continuous variables occur simultaneously in a problem. If you wish to optimize a
compressor system, for example, you must select the number of compressor stages
(an integer) in addition to the suction and production pressure of each stage (posi-
tive continuous variables). Optimization problems without discrete variables are far
easier to solve than those with even one discrete variable. Refer to Chapter 9 for
more information about the effect of discrete variables in optimization.

Outlet
Feed ——> —
[—
N
Observed flow _ _
patterns
Stirred tank
Flow in Axial “—> Flow out
—_— di X1al > —
Entering reactants 1Spersion ¢ 5 :

distributed uniformly
across the cross section

FIGURE 2.1
Flow patterns in a stirred tank (lumped parameter system) and a tubular
reactor (distributed parameter system).
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An engineer typically strives to treat discrete variables as continuous even at
the cost of achieving a suboptimal solution when the continuous variable is rounded
off. Consider the variation of the cost of insulation of various thickness as shown
in Figure E1.1. Although insulation is only available in 0.5-in. increments, contin-
uous approximation for the thickness can be used to facilitate the solution to this
optimization_problem.

2.2 HOW TO BUILD A MODEL

For convenience of presentation, model building can be divided into four phases:
(1) problem definition and formulation, (2) preliminary and detailed analysis,
(3) evaluation, and (4) interpretation application. Keep in mind that model building
is an iterative procedure. Figure 2.2 summarizes the activities to be carried out,

Experience Formulate model objectives, Management
fealit ’ evaluation criteria, costs ob'e% tives
y of development )
Select key variables,
physical principles to be applied,
test plan to be used ' Problem -
Definition
Phase
Computer simulation, Develop Observations,
software development model data
Design
Phase
Estimate
parameters
Evaluate and Evaluation
verify model Phase
Apply model
FIGURE 2.2

Major activities in model building prior to application.
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which are discussed in detail later on. The content of this section is quite limited in
scope; before actually embarking on a comprehensive model development pro-
gram, consult textbooks on modeling (see References).

Problem definition and formulation phase

In this phase the problem is defined and the important elements that pertain to
the problem and its solution are identified. The degree of accuracy needed in the
model and the model’s potential uses must be determined. To evaluate the structure
and complexity of the model, ascertain

1. The number of independent variables to be included in the model.

2. The number of independent equations required to describe the system (some-
times called the “order’’ of the model).

3. The number of unknown parameters in the model.

In the previous section we addressed some of these issues in the context of
physical versus empirical models. These issues are also intertwined with the ques-
tion of model verification: what kinds of data are available for determining that the
model is a valid description of the process? Model building is an iterative process,
as shown by the recycling of information in Figure 2.2.

Before carrying out the actual modeling, it is important to evaluate the eco-
nomic justification for (and benefits of) the modeling effort and the capability of
support staff for carrying out such a project. Primarily, determine that a success-
fully developed model will indeed help solve the optimization problem.

Design phase

The design phase includes specification of the information content, general
description of the programming logic and algorithms necessary to develop and
employ a useful model, formulation of the mathematical description of such a
model, and simulation of the model. First, define the input and output variables, and
determine what the “system” and the “environment” are. Also, select the specific
mathematical representation(s) to be used in the model, as well as the assumptions
and limitations of the model resulting from its translation into computer code. Com-
puter implementation of the model requires that you verify the availability and ade-
quacy of computer hardware and software, specify computer input—output media,
develop program logic and flowsheets, and define program modules and their struc-
tural relationships. Use of existing subroutines and databases saves you time but can
complicate an optimization problem for the reasons explained in Chapter 15.

Evaluation phase

This phase is intended as a final check of the model as a whole. Testing of indi-
vidual model elements should be conducted during earlier phases. Evaluation of the
model is carried out according to the evaluation criteria and test plan established in
the problem definition phase. Next, carry out sensitivity testing of the model inputs
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and parameters, and determine if the apparent relationships are physically mean-
ingful. Use actual data in the model when possible. This step is also referred to as
diagnostic checking and may entail statistical analysis of the fitted parameters (Box
et al., 1978).

Model validation requires confirming logic, assumptions, and behavior. These
tasks involve comparison with historical input—output data, or data in the literature,
comparison with pilot plant performance, and simulation. In general, data used in
formulating a model should not be used to validate it if at all possible. Because
model evaluation involves multiple criteria, it is helpful to find an expert opinion in
the verification of models, that is, what do people think who know about the
process being modeled?

No single validation procedure is appropriate for all models. Nevertheless, it
is appropriate to ask the question: What do you want the model to do? In the best
of all possible worlds, you want the model to predict the desired process perform-
ance with suitable accuracy, but this is often an elusive goal.

2.3 SELECTING FUNCTIONS TO FIT EMPIRICAL DATA

A model relates the output (the dependent variable or variables) to the independent
variable(s). Each equation in the model usually includes one or more coefficients
that are presumed constant. The term parameter as used here means coefficient and
possibly input or initial condition. With the help of experimental data, we can deter-
mine the form of the model and subsequently (or simultaneously) estimate the value
of some or all of the parameters in the model.

2.3.1 How to Determine the Form of a Model

Models can be written in a variety of mathematical forms. Figure 2.3 shows a few
of the possibilities, some of which were already illustrated in Section 2.1. This sec-
tion focuses on the simplest case, namely models composed of algebraic equations,
which constitute the bulk of the equality constraints in process optimizatidn.
Empbhasis here is on estimating the coefficients in simple models and not on the
complexity of the model.

Selection of the form of an empirical model requires judgment as well as some
skill in recognizing how response patterns match possible algebraic functions.
Optimization methods can help in the selection of the model structure as well as in
the estimation of the unknown coefficients. If you can specify a quantitative crite-
rion that defines what “best” represents the data, then the model can be improved
by adjusting its form to improve the value of the criterion. The best model presum-
ably exhibits the least error between actual data and the predicted response in some
sense.



CHAPTER 2: Developing Models for Optimization 49
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equations equations equations equations
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FIGURE 2.3
Typical mathematical forms of models.

Typical relations for empirical models might be

y=ay+ ax; + ayx, + - linear in the variables and coefficients
y = ay, + a;x2 + apxx, + -+ linear in the coefficients, nonlinear in
the variables (x;, x,)
1 . . .
G(s) = 5 nonlinear in all the coefficients
ay + a;s + a,s
®Nu = a(Re)’ nonlinear in the coefficient b
(Nu: Nusselt number; Re: Reynolds
number)

When the model is linear in the coefficients, they can be estimated by a pro-
cedure called linear regression. If the model is nonlinear in the coefficients, esti-
mating them is referred to as nonlinear regression. In either case, the simplest ade-
quate model (with the fewest number of coefficients) should be used.

Graphical presentation of data assists in determining the form of the function
of a single variable (or two variables). The response y versus the independent vari-
able x can be plotted and the resulting form of the model evaluated visually. Figure
2.4 shows experimental heat transfer data plotted on log—log coordinates. The plot
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Predicted Nusselt numbers for turbulent flow with constant wall heat flux (adapted with
permission from John Wiley and Sons from Bird et al., 1964). Abbreviations: Nu = Nusselt
number; Re = Reynolds number; Pr = Prandtl number.

appears to be approximately linear over wide ranges of the Reynolds number (Re).
A straight line in Figure 2.4 would correspond to log Nu = log a + b log Re or Nu
= a(Re)’. Observe the scatter of experimental data in Figure 2.4, especially for
large values of the Re.

If two independent variables are involved in the model, plots such as those
shown in Figure 2.5 can be of assistance; in this case the second independent vari-
able becomes a parameter that is held constant at various levels. Figure 2.6 shows
a variety of nonlinear functions and their associated plots. These plots can assist in
selecting relations for nonlinear functions of y versus x. Empirical functions of
more than two variables must be built up (or pruned) step by step to avoid includ-
ing an excessive number of irrelevant variables or missing an important one. Refer
to Section 2.4 for suitable procedures.

Now let us review an example for selecting the form of a model to fit experi-
mental data.
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FiIGURE 2.6 (continued)

EXAMPLE 2.3 ANALYSIS OF THE HEAT TRANSFER
COEFFICIENT

Suppose the overall heat transfer coefficient of a shell-and-tube heat exchanger is cal-
culated daily as a function of the flow rates in both the shell and tube sides (w, and
w,, respectively). U has the units of Btu/(h)(°F)(ft?), and w, and w, are in 1b/h. Figures
E2.3a and E2.3b illustrate the measured data. Determine the form of a semiempirical
model of U versus w, and w, based on physical analysis.

Solution. You could elect to simply fit U as a polynomial function of w, and w,; there
appears to be very little effect of w, on U, but U appears to vary linearly with w, (except
at the upper range of w, where it begins to level off). A more quantitative approach
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can be based on a physical analysis of the exchanger. First determine why w,_ has no
effect on U. This result can be explained by the formula for the overall heat transfer
coefficient
L S N | @
U kb ok i
where h, = the shell heat transfer coefficient
h, = the tube side heat transfer coefficient
h; = the fouling coefficient
If h, is small and A, is large, U is dominated by h,, hence changes in w, have little
effect, as shown in Figure E2.3a.
Next examine the data for U versus w, in the context of Figure 2.6. For a reason-
able range of w, the pattern is similar to curve D in Equation (3) where
X
- = a + Bx (b)
y
which can also be written as
1 a
- = — 4
y . B (©)
Note the similarity between Equations (c) and (a), where x = h,and y = U. From a stan-
dard heat transfer coefficient correlation (Gebhart, 1971), you can find that 4, also varies
according to Kw %, where K, is a coefficient that depends on the fluid physical proper-
ties and the exchanger geometry. If we lump 1/A; and 1/ h; together into one constant
1/ hy, the semiempirical model becomes
1_1, 1
U hy Kw
80 80 -
o
60 e ¢ o ¢ ° 60 |-
° [ ]
U
U 40| 40
20 20+
0 | ] | | | | |
2.0 4.0 6.0 60 80 100 120
wy( X 10-3) w; (% 10-3)
FIGURE E2.3a FIGURE E2.3b

Variation of overall heat transfer
coefficient with shell-side flow rate
w, = 8000.

Variation of overall heat transfer
coefficient with tube-side flow rate
w, for w, = 4000.
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The line in Figure E2.3b shows how well Equation (d) fits the data.

In the previous examples and figures we indicated that functions for two inde-
pendent variables can be selected. When three (or more) independent variables
occur, advanced analysis tools, such as experimental design (see Section 2.4) or
principal component analysis (Jackson, 1991), are required to determine the struc-
ture of the model.

Once the form of the model is selected, even when it involves more than two
independent variables, fitting the unknown coefficients in the model using linear or
nonlinear regression is reasonably straightforward. We discuss methods of fitting
coefficients in the next section.

2.3.2 Fitting Models by Least Squares

This section describes the basic idea of least squares estimation, which is used to
calculate the values of the coefficients in a model from experimental data. In esti-
mating the values of coefficients for either an empirical or theoretically based
model, keep in mind that the number of data sets must be equal to or greater than
the number of coefficients in the model. For example, with three data points of y
versus x, you can estimate at most the values of three coefficients. Examine Figure
2.7. A straight line might represent the three points adequately, but the data can be
fitted exactly using a quadratic model

y = Bp + Bix + Bx* (2.2)

By introducing the values of a data point (Y, x,) into Equation 2.2, you obtain one
equation of Y, as a function of three unknown coefficients. The set of three data
points therefore yields three linear equations in three unknowns (the coefficients)
that can be solved easily.

To compensate for the errors involved in experimental data, the number of data
sets should be greater than the number of coefficients p in the model. Least squares
is just the application of optimization to obtain the “best” solution of the equations,
meaning that the sum of the squares of the errors between the predicted and the
experimental values of the dependent variable y for each data point x is minimized.
Consider a general algebraic model that is linear in the coefficients.

y:

~.
M~
i

Bix; (2.3)
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/
/
//\_ Linear

Quadratic

FIGURE 2.7
Linear versus quadratic fit for three data points.

There are p independent variables Xjs j=1,...,p. Independent here means con-
trollable or adjustable, not functionally independent. Equation (2.3) is linear with
respect to the B, but x; can be nonlinear. Keep in mind, however, that the values of
x; (based on the input data) are just numbers that are substituted prior to solving for
the estimates f3;,hence nonlinear functions of x; in the model are of no concern. For
example, if the model is a quadratic function,

y = Bi + Bx + Byx?

we specify
x; =1
X, =X
X3 = x*

and the general structure of Equation (2.3) is satisfied. In reading Section 2.4 you
will learn that special care must be taken in collecting values of x to avoid a high
degree of correlation between the x;’s.

Introduction of Equation (2.3) into a sum-of-squares error objective function
gives

n p S\ 2
f= 2 (Yi - EBjxij) (2.4)
i=1 j=1
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The independent variables are now identified by a double subscript, the first index
designating the data set (experiment) number (i = 1, . . ., n) and the second the
independent variables (j = 1, p).

Minimizing f with respect to the 8’s involves differentiating f with respect to
B1> By, - - - » B, and equating the p partial derivatives to zero. This yields p equations
that relate the p unknown values of the estimated coefficients By, ..., B,

n n n n
Bi Exilxil + BZExilxiZ + o+ Bp Exilxip = 2 Yix;
i=1 i=1 i=1 i=1

n n n n
By EXinil + ,322%2%2 + -+ B, Exinip = 2 Yx,
= = iz =1

n n n
Bi Exipxil + B22xipxi2 + ot 5 Exipxip = 2 Yix;, (2.5)
i=1 i=1 i=1

where B,- = the estimated value of 3;
x;’s = the experimental values of x;
Y; = the measured dependent variables

Note the symmetry of the summation terms in x;; and that numbering of x;’s in the
summations corresponds to matrix indices (rows, columns). This set of p equations
in p unknowns can be solved on a computer using one of the many readily avail-
able routines for solving simultaneous linear equations.

Equations (2.5) can be expressed in more compact form if matrix notation is
employed (see Appendix A). Let the model be expressed in vector matrix notation as

Y=xf+e o (2.6)

where € = the random error in the data
Y = the vector of measured dependent variables

Bi Y,
B2 Y,
B=|" vy=|"
| B, | Y, |
X1 X2 7 Xy
X1 X2 Tt Xy,

Xn1 Xn2 e Xn
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The objective function to be minimized is

f=¢€Te = (Y - xB)T(Y - xB) (2.7)
Equations 2.5 can then be expressed as
xx 8 = x7Y (2.8)

which has the formal solution via matrix algebra
B = (x"x)"x"Y 2.9)

Statistical packages and spreadsheets solve the simultaneous equations in (2.8)
to estimate B rather than computing the matrix inverse in Equation (2.9).

The next two examples illustrate the application of Equation 2.9 to fit coeffi-
cients in an objective function. The same procedure is used to fit coefficients in
constraint models.

EXAMPLE 24 APPLICATION OF LEAST SQUARES TO
DEVELOP A COST MODEL FOR THE COST OF HEAT
EXCHANGERS

In the introduction we mentioned that it is sometimes necessary to develop a model for
the objective function using cost data. Curve fitting of the costs of fabrication of heat
exchangers can be used to predict the cost of a new exchanger of the same class with
different design variables. Let the cost be expressed as a linear equation

C=B+tBN+BA

where B,, B,, and B, are constants
N = number of tubes
A = shell surface area

Estimate the values of the constants 8,, 3,, and B; from the data in Table E2.4. The
Tegressors are x; = 1,x, =N, and x; = A.

Solution. The matrices to be used in calculating fi are as follows (each data set is

weighted equally):
[1 120 550]
1 130 600
1 108 520
1 110 420
x=|1 84 400
1 90 300
1 80 230
1 55 120
1 64 190
1 50 100
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TABLE E2.4

Labor cost data for mild-steel
floating-head exchangers
(0-500 psig) working pressure

Labor cost Area Number of
® A) tubes (V)
310 120 550
300 130 600
275 © 108 520
250 110 420
220 84 400
200 90 300
190 80 230
150 55 120
140 64 190
100 50 100

Source: Shahbenderian, 1961.

10 891 3,430
(xTx) =] 891 86,241 349,120

(x'Y) =

3,430 349,120 1,472,700

2,135
207,290

844,800

Equation (2.9) gives the best estimates of 3,, B,, and S;:

Check to see if these coefficients yield a reasonable fit to the data in Table E2.4.

A

B, = 38.177
B, = 1.164
B; = 0.209

59

EXAMPLE 2.5 APPLICATION OF LEAST SQUARES IN YIELD

CORRELATION

.Ten data points were taken in an experiment in which the independent variable x is the

mole percentage of a reactant and the dependent variable y is the yield (in percent):
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x Yy

20 73
20 78
30 85
40 90
40 91
50 87
50 86
50 9
60 75

70 65

Fit a quadratic model with these data and determine the value of x that maximizes the
yield.

Solution. The quadratic model is y = B; + Byx + Bsx%. The estimated coefficients
computed using Excel are

A

B, = 35.66
B, = 2.63
B; = —0.032

The predicted optimum can be formed by differentiating
Y = B + Box + Bax?

with respect to x and setting the derivative to zero to get

A

= P2 _ 4109

2Bs

The predicted yield Y at the optimum is 88.8.

Certain assumptions underly least squares computations such as the indepen-
dence of the unobservable errors g, a constant error variance, and lack of error in the
x’s (Draper and Smith, 1998). If the model represents the data adequately, the resid-
uals should possess characteristics that agree with these basic assumptions. The
analysis of residuals is thus a way of checking that one or more of the assumptions
underlying least squares optimization is not violated. For example, if the model fits
well, the residuals should be randomly distributed about the value of y predicted by
the model. Systematic departures from randomness indicate that the model is unsat-
isfactory; examination of the patterns formed by the residuals can provide clues about
how the model can be improved (Box and Hill, 1967; Draper and Hunter, 1967).

Examinations of plots of the residuals versus Y; or x;, or a plot of the frequency
of the residuals versus the magnitude of the residuals, have been suggested as
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numerical or graphical aids to assist in the analysis of residuals. A study of the signs
of the residuals (+ or —) and sums of signs can be used. Residual analysis should
include

1. Detection of an outlier (an extreme observation).

2. Detection of a trend in the residuals.

3. Detection of an abrupt shift in the level of the experiment (sequential observations).

4. Detection of changes in the error variance (usually assumed to be constant).

5. Examination to ascertain if the residuals are represented by a normal distribu-
tion (so that statistical tests can be applied).

When using residuals to determine the adequacy of a model, keep in mind that
as more independent variables are added to the model, the residuals may become
less informative. Each residual is, in effect, a weighted average of the &;’s; as more
unnecessary x;’s are added to a model, the residuals become more like one another,
reflecting an indiscriminate average of all the €’s instead of primarily representing
one ¢;. In carrying out the analysis of residuals, you will quickly discover that a
graphical presentation of the residuals materially assists in the diagnosis because
one aberration, such as a single extreme value, can simultaneously affect several of
the numerical tests.

Nonlinear least squares

If a model is nonlinear with respect to the model parameters, then nonlinear
least squares rather than linear least squares has to be used to estimate the model
coefficients. For example, suppose that experimental data is to be fit by a reaction
rate expression of the form r, = kCJ. Here r, is the reaction rate of component A,
C, is the reactant concentration, and k and n are model parameters. This model is
linear with respect to rate constant k but is nonlinear with respect to reaction order
n. A general nonlinear model can be written as

y =fxux %3 ..., B By Bs. . .) (2.10)

where y = the model output
x;’s = model inputs
B;’s = the parameters to be estimated

We still can define a sum-of-squares error criterion (to be minimized) by selecting
the parameter set §; so as to

min > (¥, - 7))’ 2.11)
j i=1

where Y; = the ith output measurement

Y, = model prediction corresponding to the ith data point
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The estimated coefficients listed for model 2 in Example 2.2 were obtained usmg
nonlinear least squares (Bates and Watts, 1988).

As another example, consider the problem of estimating the gain K and time
constants 7, for first-order and second-order dynamic models based on a measured
unit step response of the process y(f). The models for the step response of these two
processes are, respectively (Seborg et al., 1989),

¥(t) = K(1 — &™) (2.12)
—t/T _ —t/7,
We) = K(l - e — :Ze ) 2.13)

where ¢ = the independent variable (time)
y = the dependent variable

Although K appears linearly in both response equations, 7, in (2.12) and 7,
and 7, in (2.13) appear nonlinearly, so that nonlinear least squares must be used to
estimate their values. The specific details of how to carry out the computations will
be deferred until we take up numerical methods of unconstrained optimization in
Chapter 6.

2.4 - FACTORIAL EXPERIMENTAL DESIGNS

Because variables in models are often highly correlated, when experimental data
are collected, the x"x matrix in Equation 2.9 can be badly conditioned (see Appen-
dix A), and thus the estimates of the values of the coefficients in a model can have
considerable associated uncertainty. The method of factorial experimental design
forces the data to be orthogonal and avoids this problem. This method allows you
to determine the relative importance of each input variable and thus to develop a
parsimonious model, one that includes only the most important variables and
effects. Factorial experiments also represent efficient experimentation. You system-
atically plan and conduct experiments in which all of the variables are changed
simultaneously rather than one at a time, thus reducing the number of experiments
needed.

Because of the orthogonality property of factorial design, statistical tests are
effective in discriminating among the effects of natural variations in raw materials,
replicated unit operations (e.g., equipment in parallel), different operators, different
batches, and other environmental factors. A proper orthogonal design matrix for
collecting data provides independent estimates of the sums of squares for each vari-
able as well as combinations of variables. Also the estimates of the coefficients
have a lower variance than can be obtained with a nonorthogonal experimental
design (Montgomery, 1997; Box et al., 1978). That is, you can have more confi-
dence in the values calculated for B; than would occur with a nonorthogonal design.
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TABLE 2.1
Orthogonal experimental design
Scaled (coded)
values of the
independent
Experiment Response variables
number y 2, %

1 Y, -1 -1
2 Y, 1 -1
3 Y, -1 1
4 Y, 1 1
5 Y5 0 0

From a practical standpoint, the user of the model must decide which input
variables should be studied because this will determine the number of tests that
must be carried out (Drain, 1997). In a standard factorial design, 2" tests are
required, where n is the number of input variables to be studied. You must also
decide how much each input variable should be changed from its nominal value,
taking into account the sensitivity of the process response to a change in a given
input variable, as well as the typical operating range of the process. The determi-
nation of the region of experimentation requires process knowledge. The experi-
mental range should be chosen so that the resulting measurements of the response
do not involve errors in the sensors that are greater than typical noise levels.

Suppose you want to fit the linear model y = B; + B,z; + Bsz,, where z; and z,
are the independent variables. Let the values of z; and z, in the experiment be delib-
erately chosen by an experimental orthogonal design like that shown in Table 2.1.

The values of the coded independent variables correspond to the four corners
of a square in the z, and z, space. The summations in Equation (2.5) simplify in this
case (x; = 1,x, = 2, X3 = 2,):

Extlxﬂ Ezll =0 2x11x13 2221 =0 Exﬂxﬁ 2211221 =0
5
zxilxil =35 ExIthZ 2211 =4 2%3%3 ZZZt 4
i=

For the experimental design in Table 2.1,

500
xXx=1040
00 4

ity tystystys
XY=y +y—y+y
Y1~ Y2t ¥ty
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FIGURE E2.6
Orthogonal design for the variables temperature,
pressure, and flowrate.

It is quite easy to solve Equation (2.9) now because these expressions are
uncoupled, the inverse of x’x for Equation (2.13) can be obtained by merely taking
the reciprocal of the diagonal elements.

EXAMPLE 2.6 IDENTIFICATION OF IMPORTANT VARIABLES
BY EXPERIMENTATION USING AN ORTHOGONAL
FACTORIAL DESIGN

Assume a reactor is operating at the reference state of 220°C, 3 atm pressure, and a
gas flow rate of 200 kg/h. We can set up an orthogonal factorial design to model this
process with a linear model Y = B, + B,x, + Bsx; + B,x, so that the coded values of
the x; are 1, —1, and 0. Examine Figure E2.6. Suppose we select the changes in the
operating conditions of *+20°C for the temperature, +2 atm for the pressure, and +50
kg/h for flowrates. Let x; = 1; then x,, x5, and x,, the coded variables, are calculated
in terms of the proposed operating conditions as follows:

_ 1(°C) — 220
< 20

_ p(atm) — 3
X3 = 2

m(kg/h) — 200
¥4 = 50
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Based on the design the following data are collected:

Y (yield) X, X3 X4

20.500 -1 -1 -1
60.141 1 -1 -1
58.890 -1 1 -1
67.712 1 1 -1
22.211 -1 -1 1
61.541 1 -1 1
59.902 -1 1 1
69.104 1 1 1
71.870 0 0 0
78.933 0 0 0
70.100 0 0 0

The extra data at the (0, 0) point are used to obtain a measure of the error involved in
the experiment.

Solution. The matrices involved are

110 0 0 0091 0 0 O
0800 0 0125 0 0

Ty — Te\~1 —

XX=1 0080 (x’x) 0 0 0125 0
0008 0 0 0 0125
646.9
96.99

T -

XY =1 9101
551

With these matrices you can compute the estimates of LA'?i by solving Equation (2.9),
yielding

Y = 58.810 + 12.124x, + 11.402x, + 0.689x,

In terms of the original variables

A {(°C) — 220 p(atm) — 3
¥ = 58810 + 12.124( = —— ) + 11402 =—— —

+ O.689(m(kg/ h) 200)

50

= 58.810 + 0.6062(t — 220) + 5.701(p — 3) + 0.0138 (m — 200)

It is clear from the size of the estimated coefficients that mass flowrate changes have
a much smaller influence on the yield and thus, for practical purposes, could be elim-
inated as an important independent variable.
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If the independent variables are orthogonal, deciding whether to add or delete
variables or functions of variables in models is straightforward using stepwise least
squares (regression), a feature available on many software packages. Stepwise
regression consists of sequentially adding (or deleting) a variable (or function) of
variables to a proposed model and then testing at each stage to see if the added (or
deleted) variable is significant. The procedure is only effective when the indepen-
dent variables are essentially orthogonal. The coupling of orthogonal experimental
design with optimization of operating conditions has been called “evolutionary
operation” by which the best operating conditions are determined by successive
experiments (Box and Draper, 1969; Biles and Swain, 1980).

2.5 DEGREES OF FREEDOM

In Section 1.5 we briefly discussed the relationships of equality and inequality con-
straints in the context of independent and dependent variables. Normally in design
and control calculations, it is important to eliminate redundant information and
equations before any calculations are performed. Modern multivariable optimiza-
tion software, however, does not require that the user clearly identify independent,
dependent, or superfluous variables, or active or redundant constraints. If the num-
ber of independent equations is larger than the number of decision variables, the
software informs you that no solution exists because the problem is overspecified.
Current codes have incorporated diagnostic tools that permit the user to include all
possible variables and constraints in the original problem formulation so that you
do not necessarily have to eliminate constraints and variables prior to using the soft-
ware. Keep in mind, however, that the smaller the dimensionality of the problem
introduced into the software, the less time it takes to solve the problem.

The degrees of freedom in a model is the number of variables that can be spec-
ified independently and is defined as follows:

Np =N, — Ng (2.14)

where N, = degrees of freedom
N, = total number of variables involved in the problem
Ny = number of independent equations (including specifications)

A degrees-of-freedom analysis separates modeling problems into three cate-
gories:

1. N = 0: The problem is exactly determined. If N = 0, then the number of inde-
pendent equations is equal to the number of process variables and the set of
equations may have a unique solution, in which case the problem is not an opti-
mization problem. For a set of linear independent equations, a unique solution
exists. If the equations are nonlinear, there may be no real solution or there may
be multiple solutions.



CHAPTER 2: Developing Models for Optimization 67

2. N > 0: The problem is underdetermined. If N, > 0, then more process vari-
ables exist in the problem than independent equations. The process model is said
to be underdetermined, so at least one variable can be optimized. For linear mod-
els, the rank of the matrix formed by the coefficients indicates the number of
independent equations (see Appendix A).

3. N <O0: The problem is overdetermined. If N < 0, fewer process variables exist
in the problem than independent equations, and consequently the set of equa-
tions has no solutions. The process model is said to be overdetermined, and least
squares optimization or some similar criterion can be used to obtain values of the
unknown variables as described in Section 2.5.

EXAMPLE 2.7 MODEL FOR A SEPARATION TRAIN

Figure E2.7 shows the process flow chart for a series of two distillation columns,

with mass flows and splits defined by x,, x,, . . . , xs. Write the material balances, and
show that the process model comprises two independent variables and three degrees
of freedom.

Solution. The balances for columns 1 and 2 are shown below:

Column 1 X =x,+x; or X —x,—x3=0 (a)
x, = .40x, or x, —04x;, =0 b)
x;3 = .60x; or x;— 0.6x; =0 ©

There are three equations and three unknowns.

40% light ends Medium solvent
(x3) (x4)
Feed Column Column
—_
(x1) 1 2
60% bottoms Heavy solvent
(x2) (xs)

FIGURE E2.7
Train of distillation columns.
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The coefficient matrix is

Variables
X X X3
Equations (a) 1 -1 -1
®) -04 1
(©) -0.6 0 1

The three equations are not independent. The rank of the coefficient matrix is 2,
hence there are only two independent variables, and column 1 involves 1 degree of
freedom.

Column 2 Xy=X4+x5 of X,—x4—x5=0 )

There is one equation and three unknowns, so there are two degrees of freedom.Over-
all there are four equations (a), (b), (c), (d) and five variables.The coefficient matrix
is

X X X3 X4 Xs
(a) 1 -1 -1 0 0
(b) -04 1 0 0 0
(c) -0.6 0 1 0 0
(d) 0 1 0o -1 -1

Because the rank of the coefficient matrix is three, there are only three inde-

" pendent equations, so Equation (2.14) indicates that there are two degrees of freedom.

You can reduce the dimensionality of the set of material balances by substitution of
one equation into another and eliminating both variables and equations.

In some problems it is advantageous to eliminate obvious dependent variables to
reduce the number of equations that must be included as constraints. You can elimi-
nate linear constraints via direct substitution, leaving only the nonlinear constraints,
but the resulting equations may be too complex for this procedure to have merit. The
following example illustrates a pipe flow problem in which substitution leads to one
independent variable. ' ‘

EXAMPLE 2.8 ANALYSIS OF PIPE FLOW

Suppose you want to design a hydrocarbon piping system in a plant between two
points with no change in elevation and want to select the optimum pipe diameter that
minimizes the combination of pipe capital costs and pump operating costs. Prepare a
model that can be used to carry out the optimization. Identify the independent and
dependent variables that affect the optimum operating conditions. Assume the fluid
properties (u, p) are known and constant, and the value of the pipe length (L) and
mass flowrate (m) are specified. In your analysis use the following process variables:
pipe diameter (D), fluid velocity (v), pressure drop (Ap), friction factor (f).

Solution. Intuitively one expects that an optimum diameter can be found to minimize
the total costs. It is clear that the four process variables are related and not indepen-
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dent, but we need to examine in an organized way how the equality constraints (mod-
els) affect the degrees of freedom.
List the equality constraints:

1. Mechanical energy balance, assuming no losses in fittings, no change in elevation,

and so on.
2fpv’L
Ap =
p D (@
2. Equation of continuity, based on plug flow under turbulent conditions.
wD?
m= (p ; )v ()

3. A correlation relating the friction factor with the Reynolds number (Re).

Dvp

=ty =o(22)

The friction factor plot is available in many handbooks, so that given a value of Re,
one can find the corresponding value of f. In the context of numerical optimization,
however, using a graph is a cumbersome procedure. Because all of the constraints
should be expressed as mathematical relations, we select the Blasius correlation for a
smooth pipe (Bird et al., 1964): :

o 0.046p%
f=0.046Re 0'? = po2,02 002 : _ (©

The model involves four variables and three independent nonlinear algebraic
equations, hence one degree of freedom exists. The equality constraints can be manip-
ulated using direct substitution to eliminate all variables except one, say the diameter,
which would then represent the independent variables. The other three variables
would be dependent. Of course, we could select the velocity as the single independent
variable of any of the four variables. See Example 13.1 for use of this model in an
optimization problem.

2.6 EXAMPLES OF INEQUALITY AND EQUALITY CONSTRAINTS
IN MODELS

As mentioned in Chapter 1, the occurrence of linear inequality constraints in indus-
trial processes is quite common. Inequality constraints do not affect the count of the
degrees of freedom unless they become active constraints. Examples of:such con-
straints follow:
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1. Production limitations arise because of equipment throughput restrictions, stor-
age limitations, or market constraints (no additional product can be sold beyond
some specific level).

2. Raw material limitations occur because of limitations in feedstock supplies;
these supplies often are determined by production levels of other plants within
the same company.

3. Safety or operability restrictions exist because of limitations on allowable oper-
ating temperatures, pressures, and flowrates.

4. Physical property specifications on products must be considered. In refineries
the vapor pressure or octane level of fuel products must satisfy some specifica-
tion. For blends of various products, you usually assume that a composite prop-
erty can be calculated through the averaging of pure component physical prop-
erties. For N components with physical property values V; and volume fraction
y;, the average property V is

_ N
V= EVz’)’i
i=1

EXAMPLE 29 FORMULATION OF A LINEAR INEQUALITY
CONSTRAINT FOR BLENDING

Suppose three intermediates (light naphtha, heavy naphtha, and “catalytic” oil) made
in a refinery are to be blended to produce an aviation fuel. The octane number of the
fuel must be at least 95. The octane numbers for the three intermediates are shown in

the table.
Amount blended . Octane
(barrels/day) number
Light naphtha X 92
Heavy naphtha X, 86
Catalytic oil X3 97

Write an inequality constraint for the octane number of the aviation fuel, assum-
ing a linear mixing rule.

Solution. Assume the material balance can be based on conservation of volume (as
well as mass). The production rate of aviation gas is x, = x; + x, + x;. The volume-
average octane number of the gasoline can be computed as

X
— B )y +— g +—2—(97)=95  (a)
X+ xy + x5 X, + x, + x;3 X1+ x+ x3

Multiplying Equation (a) by (x; + x, + x;) and rearranging, we get
—3x1 - 9x2 + 2X3 =0 ‘ (b)

This constraint ensures that the octane number specification is satisfied. Note that
Equation (b) is linear.
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EXAMPLE 2.10 LINEAR MATERIAL BALANCE MODELS

In many cases in which optimization is applied, you need to determine the allocation
of material flows to a set of processes in order to maximize profits. Consider the
process diagram in Figure E2.10.

A
X11 *1 1 —————> F
C xg
T
12 2 ——> F
B C X9
X12 N X5
X3
5 3 —> G
C 6 X10
X7

FIGURE E2.10
Flow diagram for a multiproduct plant.

Each product (E, F, G) requires different (stoichiometric) amounts of reactants
according to the following mass balances:

: Reactants
Product (1-kg product)
E ZkgA,1kgB
F ZkgA,1kgB
G 1kg A, skgB, skgC

Prepare a model of the process using the mass balance equations.

Solution. Twelve mass flow variables can be defined for this process. Let x,, x5, x;
be the mass input flows of A to each process. Similarly let x,, x5, ¢, and x, be the indi-
vidual reactant flows of B and C, and define xg, x5, and x,, as the three mass product
flows (E, F, G). Let x,, and x,, be the total amounts of A and B used as reactants (C
is the same as x,). Thus, we have a total of 12 variables.

The linear mass balance constraints that represent the process are:

A=x11=x1+x2+x3 (a)
B=x,=x4+ x5+ X 7 ()]
X = 0.667x8 (C)

Xy = 0.667XQ (d)
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X3 = 05y (€)
X, = 0.333x 6))
x5 = 0.333x, (®
xg = 0.167x,4 (h)
x; = 0.333x 0]

With 12 variables and 9 independent linear equality constraints, 3 degrees of freedom
exist that can be used to maximize profits. Note that we could have added an overall
material balance, x;; + x;, + x;, = x5 + xy + x,,, but this would be a redundant equa-
tion since it can be derived by adding the material balances.

Other constraints can be specified in this problem. Suppose that the supply of A
was limited to 40,000 kg/day, or

x;; = 40,000 0)

If this constraint is inactive, that is, the optimum value of x,, is less than 40,000
kg/day, then, in effect, there are still 3 degrees of freedom. If, however, the optimiza-
tion procedure yields a value of x;; = 40,000 (the optimum lies on the constraint, such
as shown in Figure 1.2), then inequality constraint f becomes an equality constraint,
resulting in only 2 degrees of freedom that can be used for optimization. You should
recognize that it is possible to add more inequality constraints, such as constraints on
materials supplies, in the model, for example,

X1, = 30,000 ®
x; =< 25,000 )

These can also become “active” constraints if the optimum lies on the constraint
boundary. Note that we can also place inequality constraints on production of E, F,
and G in order to satisfy market demand or sales constraints

xg = 20,000 (m)
Xy = 25,000 (n)
X10 = 30,000 (0)

Now the analysis is much more complex, and it is clear that more potential equal-
ity constraints exist than variables if all of the inequality constraints become active. It
is possible that optimization could lead to a situation where no degrees of freedom
would be left—one set of the inequality constraints would be satisfied as equalities.
This outcome means no variables remain to be optimized, and the optimal solution
reached would be at the boundaries, a subset of the inequality constraints.

Other constraints that can be imposed in a realistic problem formulation include

1. Operating limitations (bottlenecks)—there could be a throughput limitation on
reactants to one of the processes (e.g., available pressure head).

2. Environmental limitations—there could be some additional undesirable by-products
H, such as the production of toxic materials (not in the original product list given
earlier), that could contribute to hazardous conditions.
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You can see that the model for a realistic process can become extremely com-
plex; what is important to remember is that steps 1 and 3 in Table 1.1 provide an
organized framework for identifying all of the variables and formulating the objec-
tive function, equality constraints, and inequality constraints. After this is done, you
need not eliminate redundant variables or equations. The computer software can
usually handle redundant relations (but not inconsistent ones).
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PROBLEMS

2.1 Classify the following models as linear or nonlinear

(a) Two-pipe heat exchanger (streams 1 and 2)

aT, aT, 2h, (T T)
=14, 1= -
ot 9z SlpICpl 2 !
a7, 2h,
— = T, — T,
ot chpzsz( 2 1)
BC: Ty(t,0) = a IC: Ty(0,z) =0
Ty(1,0) = b T,0,z) = T,

where T = temperature

t = time
BC = boundary conditions

p = density
(b) Diffusion in a cylinder

C, = heat capacity

S = area factor

IC = initial conditions

aC (a2c 1ac)
— =D ._2+__
ot or r or
C(O,r)=C0
aC(t,0
0) _
or

C(t, R) = CO



2.2

23
24

2.5
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where C = concentration r = radial direction
t = time . D = constant

Classify the following equations as linear or nonlinear (y = dependent variable; x, z =
independent variables)

(a) yi+y3=a°

v, azvy

b) v, — =y —
()vxax P

Classify the models in Problems 2.1 and 2.2 as steady state or unsteady state.
Classify the models in Problems 2.1 and 2.2 as lumped or distributed.

What type of model would you use to represent the process shown in the figure?
Lumped or distributed? Steady state or unsteady state? Linear or nonlinear?

Air
—_—>

FIGURE P25

A wastewater treatment system uses five stacked
venturi sections to ensure maximum oxygenation
efficiency.
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2.6 Determine the number of independent variables, the number of independent equations,
and the number of degrees of freedom for the reboiler shown in the figure. What vari-
ables should be specified to make the solution of the material and energy balances
determinaté? (Q = heat transferred)

Liquid —> m ——> Vapor

p |
Q

Figure P2.6

2.7 Determine the best functional relation to fit the following data sets:

(a) (b) © ()

Xi Y; X Y, X Y; X; Y,
1 5 2 94.8 2 0.0245 0 8290
2 7 5 87.9 4 0.0370 20 8253
3 9 8 81.3 8 0.0570 40 8215
4 11 11 74.9 16 0.0855 60 8176
14 68.7 32 0.1295 80 8136
17 64.0 64 0.2000 100 8093

128 0.3035

2.8 The following data have been collected:

X; Y

10 1.0

20 1.26
30 1.86
40 3.31

50 7.08

Which of the following three models best represents the relationship between Y and x?

y = ea+ﬂx
y= ea+ﬁ]x+ﬂ2x2

2.9 Given the following equilibrium data for the distribution of SO; in hexane, determine
a suitable linear (in the parameters) empirical model to represent the data.
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X; Y,
pressure weight fraction
(psia) hexane
200 0.846
400 0.573
600 0.401
800 0.288
1000 0.209
1200 0.153
1400 0.111
1600 0.078

2.10 (a) Suppose that you wished to curve fit a set of data (shown in the table) with the
equation

y=co+ ce” + c,e”>

M
&=

W =0
— N DN =

Calculate c,, c;, and ¢, (show what summations need to be calculated). How do
you find ¢, and ¢, if ¢, is set equal to zero?

(b) If the desired equation were y = axe ~ “*, how could you use least-squares to find
a, and a,?

2.11 Fit the following data using the least squares method with the equation:

y=c¢y+ cx

X; Y,

0.5 0.6
1.0 14
2.1 20

34 3.6
Compare the results with a graphical (visual) estimate.

2.12 Fit the same data in Problem 2.11 using a quadratic fit. Repeat for a cubic model (y =
co + ¢1x + c,x2 + ¢5x%). Plot the data and the curves.

2.13 You are asked to get the best estimates of the coefficients b, b, and c in the follow-
ing model

y = bo + b]e_cx

given the following data.
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Y, x

i
51.6 04
534 14
20.0 54
—4.2 19.5
-3.0 48.2

—4.8 95.9

Explain step by step how you would get the values of the coefficients.

2.14 Fit the following function for the density p as a function of concentration C, that is,
determine the value of a in

p=a+ 133C

given the following measurements for p and C:

p (g/cm?) C (gmol/L)

3.31 1.01
4.69 1.97
5.92 3.11
7.35 4.00
8.67 4.95

2.15 (a) For the given data, fit a quadratic function of y versus x by estimating the values
of all the coefficients.
(b) Does this set of data constitute an orthogonal design?

y 6.4 5.6 6.0 7.5 6.5 8.3 7.7 11.7 10.3 17.6 18.0
x 1.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0

2.16 Data obtained from a preset series of experiments was

Temperature, T Pressure, p Yield, Y
(°F) (atm) (%)
160 1 4
160 1 5
160 7 10
160 7 11
200 1 24
200 1 26
200 7 35
200 7 38

Fit thé linear model ¥ = bOV + byx; + b,x, using the preceding table. Report the esti-
mated coefficients by, b,, and b,. Was the set of experiments a factorial design?

2.17 You are given data for Y versus x and asked to fit an empirical model of the form:
y=a+ Bx

where 3 is a known value. Give an equation to calculate the best estimate of a.
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2.18 A replicated two-level factorial experiment is carried out as follows (the dependent
variables are yields):

Time Temperature Yield
(h) () (%)
1 240 24
5 240 42
1 280 3
5 280 19
1 240 24
5 240 46
1 280 5
5 280 21

Find the coefficients in a first-order model, Y = B, + Bx; + Byx,. (Y = yield, x; =
time, x, = temperature.)

2.19 An experiment based on a hexagon design was carried out w1th four rephcatlons at the

origin, producing the following data:

Factor levels Design levels
Yield Temperature Time
(%) () 1) Xy )
96.0 75 2.0 1.000 0
78.7 60 2.866 0.500 0.866
76.7 30 2.866 —0.500 0.866
54.6 15 2.0 —1.000 0
64.8 30 1.134 —0.500 —0.866
78.9 60 1.134 0.500 —0.866
974 45 2.0 0 0
90.5 45 2.0 0 0
93.0 45 20 0 0
86.3 45 2.0 0 0

. temperature — 45 .

Coding: x; = X, = time — 2

30

Fit the full second-order (quadratic) model to the data. -

2.20 A reactor converts an organic compound to product P by heating the material in the
presence of an additive A. The additive can be injected into the reactor, and steam can
be injected into a heating coil inside the reactor to provide heat. Some conversion can
be obtained by heating without addition of A, and vice versa. In order to predict the
yield of P, Y, (Ib mole product per 1b mole feed), as a function of the mole fraction of
A, X,, and the steam addition S (in 1b/Ib mole feed), the following data were obtained.

0.2 0.3 0
0.3 0 30
0.5 0 60
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(a) Fit a linear model
Y,=co+ Xy + ¢S

that provides a least squares fit to the data.
(b) If we require that the model always must fit the point ¥, = 0 for X, = S = 0, cal-
culate ¢, ¢;, and ¢, so that a least squares fit is obtained.

2.21 If you add a feed stream to the equilibrium stage shown in the figure, determine the
number of degrees of freedom for a binary mixture (Q = heat transferred).

Lu+1

a

Feed

Va-1 L,

FIGURE P2.21

2.22 How many variables should be selected as indepéndent variables for the furnace
shown in the figure?

25% excess dry air
100°F

CO,

Cco

80% C

Fuel 70°F ——1—114-) Furnace ——> Flue ogases H,O

20% N, 1900°F N,

— 02

0 (loss)

FIGURE P2.22

2.23 Determine the number of independent variables, the number of independent equations,
and the number of degrees of freedom in the following process (4, B, and D are chem-
ical species): / '
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@

B D
@ = F, F,
Mixer 4B Reactor 4 B.D |Distill-
ation
F, /(@B
Fs Splitt | 4.p
AB plitter B

FIGURE P2.23

The encircled variables have known values. The reaction parameters in the reactor are
known as the fraction split at the splitter between F, and Fs. Each stream is a single
phase. .

2.24 A waste heat boiler (see Fig. P2.24) is to be designed for steady-state operation under
the following specifications.

Stream drum
Risers
Downcomers | - : Shell
—> e Ly —
Gasin |- 1 | Gas out
JI
[T I1 T1 I1

Tube diameter, d

FIGURE P2.24
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Total gas flow 25,000 kg/h
Gas composition SO, (9%), O, (12%), N, (79%)
Gas temperatures in = 1200°C; out = 350°C
Stream pressure outside tubes 250 kPa
Gas properties C, = 0.24 kcal/(g)(°C)

p = 0.14 kg/(m)(h)
k = 0.053 kcal/(m)(h)(°C)

Cost data are

Shell

$2.50/kg

Tubes $150/m?
Electricity $0.60/kWh
Interest rate 14%

Base the optimization on just the cost of the shell, tubes, and pumping costs for the

gas. Ignore maintenance and repairs.

Formulate the optimization problem using only the following notation (as

needed):

poo>

Sl
&

N e 0 S

v

AP,
z

surface area of tubes, m>

cost of shell, $

cost of tubes, $

heat capacity of gas, kcal/(kg)(°C)
diameter of shell, m

tube outer and inner diameters, m
friction factor

acceleration due to gravity, m/s?

gas side heat transfer coefficient inside the tubes, kcal/(m?)(h)(°C)
interest rate, fraction

gas thermal conductivity, kcal/(m)(h)(°C)
length of shell, m

molecular weight of gas

number of tubes

life of equipment, years

duty of the boiler, kcal/h

gas temperature entering and leaving the boiler, °C
temperature in general

density of gas, kg/m?

viscosity of gas, kg/(m)(h)

gas velocity, m/s

gas flow, kg/h

weight of shell, tons

efficiency of blower

gas pressure drop, kPa

shell thickness, m

How many degrees of freedom are in the problem you formulated?
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THE FORMULATION OF objective functions is one of the crucial steps in the appli-
cation of optimization to a practical problem. As discussed in Chapter 1, you must
be able to translate a verbal statement or concept of the desired objective into math-
ematical terms. In the chemical industries, the objective function often is expressed
in units of currency (e.g., U.S. dollars) because the goal of the enterprise is to min-
imize costs or maximize profits subject to a variety of constraints. In other cases the
problem to be solved is the maximization of the yield of a component in a reactor,
or minimization of the use of utilities in a heat exchanger network, or minimization
of the volume of a packed column, or minimizing the differences between a model
and some data, and so on. Keep in mind that when formulating the mathematical
statement of the objective, functions that are more complex or more nonlinear are
more difficult to solve in optimization. Fortunately, modern optimization software
has improved to the point that problems involving many highly nonlinear functions
can be solved.

Although some problems involving multiple objective functions cannot be
reduced to a single function with common units (e.g., minimize cost while simul-
taneously maximizing safety), in this book we will focus solely on scalar objec-
tive functions. Refer to Hurvich and Tsai (1993), Kamimura (1997), Rusnak et al.
(1993), or Steur (1986) for treatment of multiple objective functions. You can, of
course, combine two or more objective functions by trade-off, that is, by suitable
weighting (refer to Chapter 8). Suppose you want to maintain the quality of a
product in terms of two of its properties. One property is the deviation of the vari-
able y; (i designates the sample number) from the setpoint for the variable, y ,. The
other property is the variability of y; from its mean y (which during a transi-
tion may not be equal to y,,). If you want to simultaneously use both criteria, you
can minimize f:

2 . 2 |
f=w E[ys,, - y,] + w@[y,- - y} (3.1,

where the w; are weighting factors to be selected by engineering judgment. From
this viewpoint, you can also view each term in the summations as being weighted
equally. "

This chapter includes a discussion of how to formulate objective functions
involved in economic analysis, an explanation of the important concept of the
time value of money, and an examination of the various ways of carrying out a
profitability analysis. In Appendix B we cover, in more detail, ways of estimat-
ing the capital and operating costs in the process industries, components that are
included in the objective function. For examples of objective functions other than
-economic ones, refer to the applications of optimization in Chapters 11 to 16.

3.1 ECONOMIC OBJECTIVE FUNCTIONS

The ability to understand and apply the concepts of cost analysis, profitability
analysis, budgets, income-and-expense statements, and balance sheets are key
skills that may be valuable. This section treats two major components of economic
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objective functions: capital costs and operating costs. Economic decisions are made
at various levels of detail. The more detail involved, the greater the expense of
preparing an economic study. In engineering practice you may need to prepare pre-
liminary cost estimates for projects ranging from a small piece of equipment or a
new product to a major plant retrofit or design.

To introduce the involvement of these two types of costs in an objective func-
tion, we consider three simple examples: The first involves only operating costs and
income, the second involves only capital costs, and the third involves both.

EXAMPLE 3.1 OPERATING PROFITS AS THE OBJECTIVE
FUNCTION

Let us return to the chemical plant of Example 2.10 with three products (E, F, G) and
three raw materials (A, B, C) in limited supply. Each of the three products is produced
in a separate process (1, 2, 3); Figure E3.1 illustrates the process.

Process data
Process 1: A + B—E

Process 2: A + B> F
Process 3:3A + 2B+ C—> G

: Maximum
Raw available Cost
material (kg/day) (¢/kg)
A 40,000 1.5
B 30,000 2.0
o 25,000 2.5
A 1]
X11 R
X 1 E
Vs 2 5 x8
\
X3 .
2 - S F
B ) X4 Xg
X12 N
)C5 .
X6
C 1 X10
FIGURE E3.1

Flow diagram for a multiproduct plant.
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Reactant Processing Selling price
requirements cost (product) (product)
Process Product (kg/kg product) (¢/kg) (¢/kg)
1 E 2a,1B 1.5 4.0
2 F 24,48 0.5 3.3
3 G 1a,iBiC 1.0 3.8

(mass is conserved)

Formulate the objective function to maximize the total operating profit per day in the
units of $/day.

Solution The notation for the mass flow rates of reactants and products is the same
as in Example 2.10.

The income in dollars per day from the plant is found from the selling prices
(0.04E + 0.033F + 0.038G). The operating costs in dollars per day include

Raw material costs: 0.015A4 + 0.02B + 0.025C

Processing costs: 0.015E + 0.005F + 0.01G

Total costs in dollars per day = 0.015A + 0.02B + 0.025C + 0.015E
+ 0.005F + 0.01G

The daily profit is found by subtracting daily operating costs from the daily income:
f(x) = 0.025E + 0.028F + 0.028G — 0.015A — 0.02B — 0.025C

= 0.025x5 + 0.028x, + 0.028x,, — 0.015x,, — 0.02x,, — 0.025x,

Note that the six variables in the objective function are constrained through material
balances, namely

x;; = 0.667xg + 0.667x9 + 0.5x,,
X1, = 0.333x3 + 0.333x4 + 0.167x,
x7 = 0.333x
Also
0 = x;; = 40,000
0 = x, = 30,000
0 = x; = 25,000
The optimization problem in this example comprises a linear objective function and

linear constraints, hence linear programming is the best technique for solving it (refer
to Chapter 7).
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The next example treats a case in which only capital costs are to be optimized.

EXAMPLE 3.2 CAPITAL COSTS AS THE OBJECTIVE
FUNCTION

Suppose you wanted to find the configuration that minimizes the capital costs of a
cylindrical pressure vessel. To select the best dimensions (length L and diameter D) of
the vessel, formulate a suitable objective function for the capital costs and find the opti-
mal (L/D) that minimizes the cost function. Let the tank volume be V, which is fixed.
Compare your result with the design rule-of-thumb used in practice, (L/D)°®* = 3.0.

Solution Let us begin with a simplified geometry for the tank based on the follow-
ing assumptions:

1. Both ends are closed and flat.

2. The vessel walls (sides and ends) are of constant thickness ¢ with density p, and
the wall thickness is not a function of pressure.

3. The cost of fabrication and material is the same for both the sides and ends, and is
.S (dollars per unit weight).

4. There is no wasted material during fabrication due to the available width of metal
plate.

The surface area of the tank using these assumptions is equal to

D* D?
2(" ) + @DL = =~ + wDL (@)
4 2
(ends) (cylinder)

From assumptions 2 and 3, you might set up several different objective functions:

D2
fi= 172— + wDL (units of area) (b)
wD? . .
fL=p - + @wDL |-t (units of weight) (c)
D
i=S-p- (12—2 + 7TDL) ot (units of cost in dollars) d)

Note that all of these objective functions differ from one another only by a multi-
plicative constant; this constant has no effect on the values of the independent vari-
ables at the optimum. For simplicity, we therefore use f; to determine the optimal val-
ues of D and L. Implicit in the problem statement is that a relation exists between
volume and length, namely the constraint

wD?

V=
4

L~ (e)

Hence, the problem has only one independent variable.
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Next use (e) to remove L from (b) to obtain the objective function

wD? 4V
+ _
2 D

fo= (f)
Differentiation of f; with respect to D for constant V, equating the derivative to zero,
and solving the resulting equation gives

pw = (L) ®)

T

This result implies that f; ~ V23, a relationship close to the classical “six-tenths” rule
used in cost estimating. From (e), L°"* = (4V/ar)!/3; this yields a rather surprising

result, namely
L opt -
- =1 h
( D) (h)

The (L/D)°*ratio is significantly different from the rule of thumb stated earlier in the
example, namely, L/D = 3; this difference must be due to the assumptions (perhaps
erroneous) regarding vessel geometry and fabrication costs.

Brummerstedt (1944) and Happel and Jordan (1975) discussed a somewhat more
realistic formulation of the problem of optimizing a vessel size, making the following
modifications in the original assumptions:

1. The ends of the vessel are 2:1 ellipsoidal heads, with an area for the two ends of
2(1.16D?% = 2.32D2

2. The cost of fabrication for the ends is higher than the sides; Happel and Jordan
suggested a factor of 1.5.

3. The thickness ¢ is a function of the vessel diameter, allowable steel stress, pressure
rating of the vessel, and a corrosion allowance. For example, a design pressure of
250 psi and a corrosion allowance of § in. give the following formula for 7 in inches
(in which D is expressed in feet):

t = 0.0108D + 0.125 ()

The three preceding assumptions require that the objective function be expressed in
dollars since area and weight are no longer directly proportional to cost

f; = p[wDLS + (1.55)(2.32D%)]s ()

The unit conversion of ¢ from inches to feet does not affect the optimum (L/D), nor
do the values of p and S, which are multiplicative constants. The modified objective
function, substituting Equation (i) in Equation (), is therefore

fs = 0.0339D2L + 0.435D? + 0.3927DL + 0.0376D? (k)
The volume constraint is also different from the one previously used because of the
dished heads: ‘
wD? D
V= L+ — l
1 ( 3 ) 0]

Equation (/) can be solved for L and substituted into Equation (k). However, No ana-
lytical solution for D°"* by direct differentiation of the objective function is possible
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now because the expression for f, when L is eliminated, leads to a complicated poly-
nomial equation for the objective function:

1%
f, = 0.0432V + 0.5000 >t 0.3041D?% + 0.0263D* - (m)

When f; is differentiated, a fourth-order polynomial in D results; no simple analytical
solution is possible to obtain the optimum value of D. A numerical search is therefore
better for obtaining D" and should be based on f; (rather than examining df,/dD =
0). However, such a search will need to be performed for different values of V and the
design pressure, parameters which are embedded in Equation (i). Recall that Equa-
tions (i) and (m) are based on a design pressure of 250 psi. Happel and Jordan (1975)
presented the following solution fqr (L/D)°*,

TABLE E3.2
Optimum (L/D)

Design pressure (psi)
Capacity (gal) 100 250 400

2,500 1.7 24 29
25,000 22 29 - 43

In Chapter 5 you will learn how to obtain such a solution. Note that for small
capacities and low pressures, the optimum L/D approaches the ideal case; examine
Equation (&) considered earlier. It is clear from Table E3.2 that the rule of thumb that
(L/D)°P* = 3 can be in error by as much as *50 percent from the actual optimum.
Also, the optimum does not take into account materials wasted during fabrication, a
factor that could change the answer.

Next we consider an example in which both operating costs and capital
costs are included in the objective function. The solution of this example requires
that the two types of costs be put on some common basis, namely, dollars per year.

EXAMPLE 3.3 OPTIMUM THICKNESS OF INSULATION

In specifying the insulation thickness for a cylindricaj vessel or pipe, it is necessary
to consider both the costs of the insulation and the value of the energy saved by adding
the insulation. In this example we determine the optimum thickness of insulation for
a large pipe that contains a hot liquid. The insulation is added to reduce heat losses
from the pipe. Next we develop an analytical expression for 1nsu1at10n thickness
based on a mathematical model.

The rate of heat loss from a large insulated cylinder (see Figure E3.3), for which
the insulation thickness is much smaller than the cylinder diameter and the inside heat
transfer coefficient is very large, can be approximated by the formula

AAT

Q=Jk+ Un

(@)



90

PART I: Problem Formulation

Insulation of
thickness x

Air

Q (heat loss)

AT = T (hot fluid) — T (air)

FIGURE E3.3
Heat loss from an insulated pipe

where AT = average temperature difference between pipe fluid and ambient sur-
roundings, K
A = surface area of pipe, m?
x = thickness of insulation, m
h. = outside convective heat transfer coeffient, kJ/(h)(m?)(K)
k = thermal conductivity of insulation, kJ/(h)(m)(K)
Q = heat loss, kJ/h

All of the parameters on the right hand side of Equation (a) are fixed values except for
x, the variable to be optimized. Assume the cost of installed insulation per unit area can
be represented by the relation C, + C;x, where C, and C, are constants (C, = fixed
installation cost and C; = incremental cost per foot of thickness). The insulation has a
lifetime of 5 years and must be replaced at that time. The funds to purchase and install
the insulation can be borrowed from a bank and paid back in five annual installments.
Let r be the fraction of the installed cost to be paid each year to the bank. The value of
r selected depends on the interest rate of the funds borrowed and will be explained in
Section 3.2.

Let the value of the heat lost from the pipe be H, ($/10° kJ). Let Y be the num-
ber of hours per year of operation. The problem is to

1. Formulate an objective function to maximize the savings in operating cost, savings
expressed as the difference between the value of the heat conserved less the annu-
alized cost of the insulation.

2. Obtain an analytical solution for x*, the optimum.

Solution 1If operating costs are to be stated in terms of dollars per year, then the cap-
ital costs must be stated in the same units. Because the funds required for the insula-
tion are to be paid back in equal installments over a period of 5 years, the payment
per year is (C, + C;x)A. The energy savings due to insulation can be calculated from
the difference between Q(x = 0) = Q,, and Q:

ATA

Qo‘Q=hcATA“m

)
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The objective function to be maximized is the present value of heat conserved in dol-
lars less the annualized capital cost (also in dollars):

f=( - Q)(f—) -Y(y—;;)-a,(“";a“)é (year)

— (Cy + Cx)A(dollars) (c)

Substitute Equation (b) into (c), dlfferentlate f with respect to x, and solve for the opti-

mum (dfldx = 0):
L k{(H,YAT)w ) L} “
T 105C,r h,

Examine how x* varies with the different parameters in (d), and confirm that the trends
are physically meaningful. Note that the heat transfer area A does not appear in Equa-
tion (d). Why? Could you formulate f as a cost minimization problem, that is, the sum
of the value of heat lost plus insulation cost? Does it change the result for x*? How do
you use this result to select the correct commercial insulation size (see Example 1.1)?

Appendix B explains ways of estimating the capital and operating costs, leading to
the coefficients in economic objective functions.

3.2 THE TIME VALUE OF MONEY IN OBJECTIVE FUNCTIONS

So far we have explained how to estimate capital and operating costs. In Example 3.3,
we formulated an objective function for economic evaluation and discovered that
although the revenues and operating costs occur in the future, most capital costs are
incurred at the beginning of a project. How can these two classes of costs be evalu-
ated fairly? The economic analysis of projects that incur income and expense over
time should include the concept of the time value of money. This concept means that
a unit of money (dollar, yen, euro, etc.) on hand now is worth more than the same unit
of money in the future. Why? Because $1000 invested today can earn additional dol-
lars; in other words, the value of $1000 received in the future will be less than the
present value of $1000.

For an example of the kinds of decisions that 1nvolve the time value of money,
examine the advertisement in Figure 3.1. For which option do you receive the most
value? Answers to this and similar questions sometimes may be quickly resolved
using a calculator or computer without much thought. To understand the underly-
ing assumptions and concepts behind the calculations, however, you need to
account for cash flows in and out using the investment time line dlagram for a proj-
ect. Look at Figure 3.2.
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You Decide Which Option You Prefer If You Are The
Winner Of The Sweepstakes:

Option 1 Option 2 Option 3
OR OR
$2,000,000 NOW. $1,000,000 NOW. $167,000 a year
Payable immediately. PLUS $137,932 a year for 30 years.
for 29 years.

Tell us your choice. Read the instructions on the reverse to learn
how you can activate your Grand Prize Option.

FIGURE 3.1
Options for potential sweepstakes winners. Which option provides the optimal value?

FIGURE 3.2
The time line with divisions
corresponding to 6 time periods.

Money paid out

Money received

FIGURE 3.3
Representation of cash received and disbursed.

Figure 3.3 depicts money received (or income) with vertical arrows ‘pointing
upward; money paid out (or expenses) is depicted by vertical arrows pointing
downward. With the aid of Figure 3.3 you can represent almost any complicated
financial plan for a project. For example, suppose you deposit $1000 now (the pres-
ent value P) in a bank savings account that pays 5.00 percent annual interest com-
pounded monthly, and in addition you plan to deposit $100 per month at the end of
each month for the next year. What will the future value F of your investments be
at the end of the year? Figure 3.4 outlines the arrangement on the time line.

Note that cash flows corresponding to the accrual of interest are not represented
by arrows in Figure 3.4. The interest rate per month is 0.4167, not 5.00 percent (the
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F=?
i=_=04167
12
0 1 2 10 1 12
|| )
PMT PMT PMT PMT PMT
p  $100  $100 $100  $100  $100
$1000
FIGURE 3.4

The transactions for the example placed on the time line.

lJlT'”li*]

"~ Construction  Start up Product Shut down  Salvage
manufactured

FIGURE 3.5
Cash flow transactions for a proposed plant placed on the time line.

annual interest rate). The number of compounding periods is n = 12. PMT is the
periodic payment. ‘

Figure 3.5 shows (using arrows only) some of the typical cash flows that might
occur from the start to the end of a proposed plant. As the plant is built, the cash
flows are negative, as is most likely the case during startup. Once in operation, the
plant produces positive cash flows that diminish with time as markets change and
competitors start up. Finally, the plant is closed, and eventually the equipment sold
or scrapped. ,

It is easy to develop a general formula for investment growth for the case in
which fractional interest i is compounded once per period (month, year). (Note: On
most occasions we will cite i in percent, as is the common practice, even though in
problem calculations i is treated as a fraction.) If P is the original investment (pres-
ent value), then P(1 + i) is the amount accumulated after one compounding period,
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say 1 year. Using the same reasoning, the value of the investment in successive
years for discrete interest payments is

t=2years F, = P(1 + i)+ iP(1 + i) = P(1 + i)? (3.2a)
t= 3years F; = P(1 + i)> + iP(1 + i)> = P(1 + i)’ (3.2b)
t= nyears F, = P(1 + i)" (3.20)

The symbol F,, is called the future worth of the investment after year n, that is, the
future value of a current investment P based on a specific interest rate i.

Equation (3.2¢) can be rearranged to give present value in terms of future
value, that is, the present value of one future payment F at period n

P = Fn 33
1+ )" (3-3)

For continuous compounding Equation (3.2¢) reduces to F, = Pe™. Refer to Gar-
rett, Chapt. 5 (1989) for the derivation of this formula.

The following is a list of some useful extensions of Equation (3.3). Note that
the factors involved in Equations (3.3)—(3.7) are F, P, i, and n, and given the values
of any three, you can calculate the fourth. Software such as Microsoft Excel and
hand calculators all contain programs to execute the calculations, many of which
must be iterative.

1. Present value of a series of payments F, (not necessarily equal) at periods k =
1, ..., n in the future:

p-__H B oy L G 3.4
S+ i)+ i) a-+y-r Qa4+ S
o~ B |

iy o0

2. Present value of a series of uniform future payments each of value 1 starting in
period m and ending with period n:

P= ,FE,,, a ii)" :[_(1 j i)(l i i)k]": ,= i(1 +1i)""1 - i(ll"IF i)

(Lt -
- i(1 + i)

Ifm=_ 1,

1 '_ (1 + )" —
k=1 + i)t i(1 + i)

(3.5)
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3. Future value of a series of (not necessarily equal) payments P,
2 P(1 + iy ! (3.6)

4. Future value of a series of uniform future payments each of value 1 starting in
period m and ending in period n:

1 + -n—m+1_1
- +l)2(1+l Sl 4 (3.7)

l

If m = 1 so that k = 1, the equivalent of Equation (3.7) is

—a+ iy 2(1+, 1+ i)m-1

i

The right-hand side of Equation (3.5) is known as the “capital recovery factor” or
“present worth factor,” and the inverse of the right-hand side is known as the “repay-
ment multiplier” r.
| i(1 + iy
r = ( : ) (3.8)
(1 + i)" — .

Tables of the repayment multiplier are listed in handbooks and some textbooks
Table 3 1 gives r over some limited ranges as a function of n and i.

TABLE 3.1
. ia + "
Values for the fraction r = -
@+ ) -
Interest rate
n i—-1 2 4 6 8 10 12 14 16 18

1 1010 1.020 1.040 1060 1.080 1.100 1.120  1.140 1.160  1.180
2 0507 0515 0530 0545 0561 0576 0592 0607 0.623  0.639
3 0340 0347 0360 0374 0388 0402 0416 0431 0445 0.460
5 0206 0212 0225 0237 0251 0264 0277 0.291 0305 0.320
10 0.106 0.111 0.123 0.136 0.149 0.163 0.177 0.192 0207 0.222
15 0072 0078 0090 0.103 0.117 0.132 0.147 0.163 0.179  0.196
20 0055 0.061 0.074 0.087 0.102 0.117 0.134 0.151 0.169  0.187
25 0.045 0051 0.064 0078 0.094 0.110 0.128 0.145 0.164 0.183
30 0.039 0045 0.058 0073 0.089 0.106 0.124 0.143 0.162 0.181
40 0030 0.037 0.051 0.067 0.084 0.102 0.121 0.141 0.160  0.180
50 0.026 0032 0.047 0.063 0.082 0.101 0.120 0.140 0.160 0.180
75 0.019 - 0026 0.042° 0061 0.080 0.100 0.120 0.140 0.160 0.180
100 0016 0023 0.041 0.060  0.080 . 0.100 0.120 0.140 0.160 0.180

Key: n = number of years i = interest rate, %
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For uniform (equal) future payments each of value F, Equation (3.5) becomes
P = — or r = — 3.9

If the interest is calculated continuously, rather than periodically, the equivalent
of Equation (3.5) is (with the uniform payments of value F)
e" — 1
P=F———— 3.10
i(e™) -10)
The inverse of the right-hand side of Equation (3.6) is known in economics as
the “sinking fund deposit factor,” that is, how much a borrower must periodically
deposit with a trustee to eventually pay off a loan.
Now let us look at some examples that illustrate the application of the concepts
and relations discussed earlier.

EXAMPLE 3.4 PAYING OFF A LOAN

You borrow $35,000 from a bank at 10.5% interest to purchase a multicone cyclone
rated at 50,000 ft3/min. If you make monthly payments of $325 (at the end of the
month), how many payments will be required to pay off the loan?

Solution The diagram on the time line in Figure E3.4a shows the cash flows.
Because the payments are uniform, we can use Equation (3.5), but use $325 per
month rather than $1.

0.105

35,000 12

, P
PMT n=7?

-325
FIGURE E34a

(1+i)—1J=0 @

35,000 — 325
000 = 32 [ i1+ 1)

Equation (a) can be solved for n (months). Use Equation (3.8) to simplify the procedure.
i + 1)
1+ iy — 1

r=

r

r — i
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_ In [r/(r—1)]

. b
In(1 + 1) ®)
In the example the data are
i = %35“ = 0.008750 1 + i = 1.008750
325
= = — i) = 333
r 35.000 0.009286 r/f(r — i) 17:3333
2.85263
= e 4
n 0.008712 327.4 months

The final payment (No. 328) will be less than $325.00, namely $143.11.

For income tax purposes, you can calculate the principal and interest in each pay-
ment. For example, at the end of the first month, the interest paid is $35,000 (0.008750)
= $306.25 and the principal paid is $325.00 — $306.25 = $18.75, so that the principal
balance for the next month’s interest calculation is $34,981.25. Iteration of this proce-
dure (best done on a computer) yields the “amortization schedule” for the loan.

You can carry out the calculations using the Microsoft Excel function key (found
by clicking on the “insert” button in the toolbar):

1. Click on the function key (f,) in the spreadsheet tool bar.
2. Choose financial function category (Figure E3.4b).
3. Select NPER.

Paste Function

Most Recently Used

inancial

FIGURE E3.4b
Permission by Microsoft.



08 ' PART I: Problem Formulation

FIGURE E3.4c
Permission by Microsoft.

| Payback Rate
000875 0009265714

FIGURE E3.4d
Permission by Microsoft.

4. Enter correct values for payment (—$325), rate (0.105/12), and present value
($35,000) (Figure E3.4c), and click on “OK” to get the screen shown in Figure
E3.4d. The solution appears in the “Number of Payments” cell (Figure E3.4e).

Note the many other options that can be called up by the function key.
You can also carry out the calculations in a spreadsheet format.

1. Enter in the value for the interest by typing “=0.105/12" in the interest cell.

2. Type “= —325/35000” in the payback rate cell.

3. In our example we type “In(b2/(b2-al))/In(1+al)” to calculate the number of
payments.
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R T TR
1 Interest Payback Rate Number of Payments
Bk 0.00875 0.009285714 327 .4392653
5

FIGURE E3.4e
Permission by Microsoft.

EXAMPLE 3.5 SELECTION OF THE CHEAPEST ANODES

Ordinary anodes for an electrochemical process last 2 years and then have to be
replaced at a cost of $20,000. An alternative choice is to buy impregnated anodes that
last 6 years and cost $56,000 (see Figure E3.5). If the annual interest rate is 6 percent
per year, which alternative would be the cheapest?

Alternative A Alternative B
0 2 4 6 0 2 4 6
l I l L J I | l I I 1 I ]
$20,000 $20,000 $20,000 $56,000

FIGURE E3.5

Solution We want to calculate the present value of each alternative. The present
value of alternative A using Equation (3.4) is

~ —$20,000 N —$20,000 i —$20,000

1 (1 +0.06)> (1 + 0.06)*

= —$53,642

The present value of alternative B is —$56,000. Alternative A gives the largest (small-
est negative) present value.
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3.3 MEASURES OF PROFITABILITY

As mentioned previously, most often in the chemical process industries the objec-
tive function for potential projects is some measure of profitability. The projects
with highest priorities are the ones with the highest expected profitability; “ex-
pected” implies that probabilistic considerations must be taken into account (Palvia
and Gordon, 1992), such as calculating the upper and lower bounds of a prediction.
In this section, however, we are concerned with a deterministic approach for eval-
uating profitability, keeping in mind that different definitions of profitability can
lead to different priority rankings. Analyses are typically carried out in spreadsheets
to generate a variety of possibilities that allow the projects to be ranked as a prel—
ude to decision making.

Among the numerous measures of economic performance that have been pro-
posed, two of the simplest are
1. Payback period (PBP)—how long a project must operate to break even; ignores

the time value of money.

Cost of investment
Cash flow per period

PBP =

Example: For an investment of $20,000 with a return of $500 per week the PBP is

$20,000
$500

= 40 weeks
2.Return on investment (ROI)—a simple yield calculation without taking into
account the time value of money

Net income (after taxes) per year
( ) pery 100

ROI (i t) =
(in percent) Cost of investment

Example: Given the net return of $6000 (per year) for an initial investment of
$45,000, the ROI is

$6000
$45,000

X 100 = 13.3%/year

Two other measures of profitability that take into account the time value of
money are

1. Net present value (NPV).
2. Internal rate of return (IRR).

NPV takes into account the size and profitability of a project, but the IRR measures
only profitability. If a company has sufficient resources to consider several small
projects, given a prespecified amount of investment, a number of high-value IRRs
usually provide a higher overall NPV than a single large project.
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|

FIGURE 3.6

Cash flows used in calculating net
present value (NPV) and internal
rate of return (IRR) for a typical
capital investment project.

S R S Y S

Figure 3.6 designates the cash flows that might occur for a cash investment in
a project. NPV is calculated by adding the initial investment (represented as a neg-
ative cash flow) to the present value of the anticipated future positive (and negative)
cash flows. Equation (3.4) showed how to calculate NPV.

o If the NPV is positive, the investment increases the company’s assets: The
investment is financially attractive.

o If the NPV is zero, the investment does not change the value of the company’s
assets: The investment is neutral.

o If the NPV is negative, the investment decreases the company’s assets: The
investment is not financially attractive.

The higher the NPV among alternative investments with the same capital outlay,
the more attractive the investment.

IRR is the rate of return (interest rate, discount rate) at which the future cash
flows (positive plus negative) would equal the initial cash outlay (a negative cash
flow). The value of the IRR relative to the company standards for internal rate of

“return indicates the desirability of an investment:

o If the IRR is greater than the designated rate of return, the investment is finan-
cially attractive.

o If the IRR is equal to the designated rate of return, the investment is marginal.

o If the IRR is less than the designated rate of return, the investment is financially
unattractive.

Table 3.2 compares some of the features of PBP, NPV, and IRR.

Numerous other measures of profitability exist, and most companies (and
financial professionals) use more than one. Cut-off levels are placed on the meas-
ures of profitability so that proposals that fall below the cut-off level are not deemed
worthy of consideration. Those that fall above the cut-off level can be ranked in
order of profitability and examined in more detail.

In optimization you are interested in

1. Minimizing the payback period (PBP), or
2. Maximizing the net present value (NPV), or
3. Maximizing the internal rate of return (IRR)
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TABLE 3.2
Comparisons of various methods used in economic analyses
Payback period (PBP) Net present value (NPV) Internal rate of return (IRR)
Definition

Number of years for the net
after-tax income to recover the

Present worth of receipts less
the present worth of

IRR equals the interest rate i
such that the NPV of receipts

net investment without disbursements less NPV of disbursements
considering time value of equals zero
money

Advantages
Measure of fluidity of an Works with all cash flow Gives rate of return that is a
investment patterns familiar measure and indicates

Commonly used and well
understood

Easy to compute

Gives correct ranking in most
project evaluations

relative merits of a proposed
investment

Treats variable cash flows

Does not require reinvestment
rate assumption

Disadvantages

Does not measure profitability
Ignores life of assets

Does not properly consider the
time value of money and
distributed investments or cash
flows

Is not always possible to
specify a reinvestment rate for
capital recovered

Size of NPV ($) sometimes
fails to indicate relative
profitability

Implicitly assumes that capital
recovered can be reinvested at
the same rate

Requires trial-and-error
calculation

Can give multiple answers for
distributed investments

or optimizing another criterion of profitability. The decision variables are adjusted
to reach an extremum. In most of the problems and examples in the subsequent
chapters we have not included factors for the time value of money because we want
to focus on other details of optimization. Nevertheless, the addition of such factors
is quite straightforward.

EXAMPLE 3.6 CALCULATION OF THE OPTIMAL INSULATION
THICKNESS

In Example 3.3 we developed an objective function for determining the optimal thick-
ness of insulation. In that example the effect of the time value of money was intro-
duced as an arbitrary constant value of r, the repayment multiplier. In this example,
we treat the same problem, but in more detail. We want to determine the optimum
insulation thickness for a 20-cm pipe carrying a hot fluid at 260°C. Assume that cur-
vature of the pipe can be ignored and a constant ambient temperature of 27°C exists.
The following information applies:
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Values of energy saved

L1 T]

0 1 2 3 4 5

Insulation cost

FIGURE E3.6
Cash flows for insulating a pipe.

Y 8000 operating hours/year

H, 3.80/10° kJ fuel cost, 80% thermal efficiency (boiler)
k 0.80 kJ/(h)(m)(°C), insulation

C $34/cm insulation for 1 m? of area, cost of insulation
h, 32.7 kJ/(h)(m?)(°C), heat transfer coefficient (still air)

Life of the insulation = 5 years
Annual discount rate (i) = 14%
L 100 m, length of pipe

The insulation of thickness x can be purchased in increments of 1 cm (i.e., 1, 2, 3 cm,
etc.). Equation (b) in Example 3.3 still applies. The value of the energy saved each
year over 5 years is

1
 (/k) + (1/m,)

Qo— 0= AT(#DL){hC ](Y)(H,) in §/year

and the cost of the insulation is
Cix(mDL) in$

at the beginning of the S-year period. Figure E3.6 is the time line on which the cash
flows are placed.

) The basis for the calculations will be L = 100m. Because the insulation comes in 1-

cm increments, let us calculate the net present value of insulating the pipe as a function
of the independent variable x; vary x for a series of 1-, 2-, 3-cm (etc.) thick increments to
get the respective internal rates of return, the payback period, and the return on invest-
ment. The latter two calculations are straightforward because of the assumption of five
even values for the fuel saved. The net present value and internal rates of return can be
compared for various thicknesses of insulation. The cost of the insulation is an initial neg-
ative cash flow, and a sum of five positive values represent the value of the heat saved.
For example, for 1 cm insulation the net present value is (r = 0.291 from Table 3.1)

$5281
0.291

P, = —$2135 + = $16,013
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A summary of the calculations is

Value Net Internal
Insulation  Insulation of fuel Payback Return on present rate of
thickness cost saved period investment value return
x (cm) £)] ($/year)  (years) (% per year) ® (%)
1 2,135 5,281 1.27 79 16,013 247
2 4,270 8,182 1.64 61 23,847 191
3 6,405 10,020 2.01 50 28,028 155
4 8,540 11,288 2.38 42 30,250 130
5 10,675 12,215 2.75 36 31,301 112
6 12,810 12,984 3.10 32 31,809 98
7 14,945 13,480 3.48 29 31,378 86

From Example 3.3, Equation E3.3(d) gives x = 6.4 cm as the optimal thickness cor-
responding to the net present value as the criterion for selection. Note that the optimal
thickness chosen depends on the criterion you select.

Additional examples of the use of PBP, NPV, and IRR can be found in
Appendix B. In Section B.5, we present a more detailed explanation of the vari-
ous components that constitute the income and expense values that must be used
in project evaluation.
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PROBLEMS

3.1 If you borrow $100,000 from a lending agency at 10 percent yearly interest and wish
to pay it back in 10 years in equal installments paid annually at the end of the year,
what will be the amount of each yearly payment? Compute the principal and interest
payments for each year.

3.2 Compare the present value of the two depreciation schedules listed below for i = .12
and n = 10 years. Depreciation is an expense and thus has a negative sign before each
value. The present value also have a negative sign.

Year (a) (b)
1 —-1000 —800
2 -1000 —1400
3 —1000 —1200
4 —1000 —1000
5 —1000 —1000
6 —1000 —1000
7 —1000 -900
8 —1000 -900
9 —1000 —900
10 —1000 —-900

3.3 To provide for the college education of a child, what annual interest rate must you
obtain to have a current investment of $5000 grow to become $10,000 in 8 years if the
interest is compounded annually?

3.4 A company is considering a number of capital improvements. Among them is pur-
chasing a small pyrolysis unit that is estimated to earn $15,000 per year at the end of
each year for the next 5 years at which time the sellers agree to purchase the unit back
for $550,000. Ignore tax effects, risk, and so on, and determine the present value of the
investment based on an interest rate of 15.00% compounded annually. At the end of
year 2 there will be an expense of $25,000 to replace the unit combustion chamber.

3.5 One member of your staff suggests that if your department spends just $10,000 to
improve a process, it will yield cost savings of $3000, $5000, and $4000 over the next
3 years, respectively, for a total of $12,000. Your company policy is to have an internal
rate of return of at least 15% on process improvements. What is the NPV of this pro-
posed improvement?

3.6 You want to save for a cruise in the Caribbean. If you place in a savings account at 6%
interest $200 at the beginning of the first year, $350 at the beginning of the next year, and
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3.7

3.8

3.9
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$250 at the beginning of the third year, how much will you have available at the end of
the third year?

You open a savings account today (the middle of the month) with a $775 deposit. The
account pays 65% interest (annual value) compounded semimonthly. If you make
semimonthly deposits of $50 beginning next month, how long will it take for your
account to reach $4000?

Looking forward to retirement, you wish to accumulate $60,000 after 15 years by mak-
ing deposits in an account that pays 92% interest compounded semiannually. You open
the account with a deposit of $3200 and intend to make semiannual deposits, begin-
ning 6 months later, from your profit-sharing bonus paychecks. Calculate how much
these deposits should be.

What is the present value of the tax savings on the annual interest payments if the loan
payments consist of five equal monthly installments of principal and interest of $3600
on a loan of $120,000. The annual interest rate is 14.0%, and the tax rate is 40%.
(Assume the loan starts at the first of July so that only five payments are made during
the year on the first of each month starting August 1.)

3.10 The following advertisement appeared in the newspaper. Determine whether the state-

ment in the ad is true or false, and show by calculations or explanation why your answer
is correct.

A 15-year fixed-rate mortgage with annual payments saves you nearly 60
percent of the total interest costs over the life of the loan compared with a 30-
year fixed-rate mortgage.

3.11 You borrow $300,000 for 4 years at an interest rate of 10% per year. You plan to pay

in equal annual, end-of-year installments. Fill in the following table.

Balance due Principal Interest Total
at beginning payment, payment, payment,
Year of year, $ $ $ $

W -

3.12 Consideration is being given to two plans for supplying water to a plant. Plan A

requires a pipeline costing $160,000 with annual operation and unkeep costs of $2200,
and an estimated life of 30 years with no salvage. Plan B requires a flume costing
$34,000 with a life of 10 years, a salvage value of $5600, and annual operation and
upkeep of $4500 plus a ditch costing $58,000, with a life of 30 years and annual costs
for upkeep of $2500. Using an interest rate of 12 percent, compare the net present val-
ues of the two alternatives.

3.13 Cost estimators have provided reliable cost data as shown in the following table for the

chlorinators in the methyl chloride plant addition. Analysis of the data and recommen-
dations of the two alternatives are needed. Use present worth for i = 0.10 and i = 0.20.
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Chlorinators
Glass-lined Cast iron
Installed cost $24,000 $7200
Estimated useful life 10 years 4 years
Salvage value $4000 $800
Miscellaneous annual costs as percent of original cost 10 20

Maintenance costs

Glass-lined. $230 at the end of the second year, $560 at the end of the fifth year, and
$900 at the end of each year thereafter. ,

Cast iron. $730 each year.

The product from the glass-lined chlorinator is essentially iron-free and is estimated to
yield a product quality premium of $1700 per year. Compare the two alternatives for
a 10-year period. Assume the salvage value of $800 is valid at 10 years.

3.14 Three projects (A, B, C) all earn a total of $125,000 over a period of 5 years (after-tax
earnings, nondiscounted). For the cash-flow patterns shown in the table, predict by
inspection which project will have the largest rate of return. Why?

Cash flow, $103
Year A B C

45 25 10
35 25 30
25 25 45
15 25 30

5 25 10

N bW =

3.15 Suppose that an investment of $100,000 will earn after-tax profits of $10,000 per year
over 20 years. Due to uncertainties in forecasting, however, the projected after-tax
profits may be in error by *20 percent. Discuss how you would determine the sensi-
tivity of the rate of return to an error of this type. Would you expect the rate of return
to increase by 20 percent of its computed value for a 20-percent increase in annual
after-tax profits (i.e., to $12,000)?

»

3.16 The installed capital cost of a pump is $200/hp and the operating costs are 4¢/kWh.
For 8000 h/year of operation, an efficiency of 70 percent, and a cost of capital i = 0.10,
for n = 5 years, determine the relative importance of the capital versus operating costs.

3.17 The longer it takes to build a facility, the lower its rate of return. Formulate the ratio
of total investment / divided by annual cash flow C (profit after taxes plus deprecia-
tion) in terms of 1-, 2-, and 3-year construction periods if i = interest rate, and n = life
of facility (no salvage value).

3.18 A chemical valued at $0.94/Ib is currently being dried in a fluid-bed dryer that allows
0.1 percent of the 4-million Ib/year throughput to be carried out in the exhaust. An
engineer is considering installing a $10,000 cyclone that would recover the fines; extra
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pressure drop is no concern. What is the expected payback period for this investment?
Maintenance costs are estimated to be $300/year. The inflation rate is 8 percent, and
the interest rate 15 percent.

3.19 To reduce heat losses, the exterior flat wall of a furnace is to be insulated. The data pre-
sented to you are

Temperature inside the furnace at the wall 500°F (constant)

Air temperature outside wall Assume constant at 70°F
Heat transfer coefficients
Outside air film (k) 4 Btu/(h)(ft?)(°F)
Conductivity of insulation (k) 0.03 Btuw/(hr)(ft)(°F)
Cost of insulation $0.75/(ft?) (per inch of thickness)
Values of energy saved $0.60/10° Btu
Hours of operation 8700/year
Interest rate 30% per year for capital costs

Note that the overall heat transfer coefficient U is related to & and k by
1 1 t

v h T )k

where ¢ is the thickness in inches of the insulation, and the heat transfer through the
wall is Q = UA (Tgymace — Twan)» Where T is in °F. Ignore any effect of the uninsulated
part of the wall.

What is the minimum cost for the optimal thickness of the insulation? List specif-
ically the objective function, all the constraints, and the optimal value of 7. Show each
step of the solution. Ignore the time value of money for this problem.

3.20 We want to optimize the heat transfer area of a steam generator. A hot oil stream from
a reactor needs to be cooled, providing a source of heat for steam production. As
shown in Figure P3.20, the hot oil enters the generator at 400°F and leaves at an
unspecified temperature T,; the hot oil transfers heat to a saturated liquid water stream
at 250°F, yielding steam (30 psi, 250°F). The other operating conditions of the
exchanger are

U = 100 Btu/(h) (ft*)(°F) overall heat transfer coefficient
WwoiC,, = 7.5 X 10* Btu/(°F)(h)

We ignore the cost of the energy of pumping and the cost of water and only consider
the investment cost of the heat transfer area. The heat exchanger cost is $25/ft? of heat

Water Steam
(250°F, L 5 (250°F,
saturated) Steam 30 psia)
generator
Oil (T,) «—— Hot oil
(400°F)
FIGURE P3.20

Steam generator flow diagram.
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transfer surface. You can expect a credit of $2/10° Btu for the steam produced. Assume
the exchanger will be in service 8000 h/year. Find the outlet temperature 7, and heat
exchanger area A that maximize the profitability, as measured by (a) return on invest-
ment (ROI) and (b) net present value.

3.21 In Chemical Engineering (Jan. 1994, p. 103) the following explanation of
internal rate of return appeared:

Internal return rate. The internal return rate (IRR), also known as the dis-
counted cash flow return rate, is the iteratively calculated discounting rate
that would make the sum of the annual cash flows, discounted to the present,
equal to zero. As shown in Figure 2, the IRR for Project Chem-A is 38.3%/yr.
Note that this single fixed point represents the zero-profitability situation. It
does not vary with the cost of capital (discount rate), although the prof-
itability should increase as the cost of capital decreases. There is no way that
the IRR can be related to the profitability of a project at meaningful discount
rates because of the nonlinear nature of the discounting step.

What is correct and incorrect about this explanation? Be brief!

3.22 Refer to Problem 3.5. The same staff member asks if the internal rate of return on
the proposed project is close to 15%. Calculate the IRR.

3.23 The cost of a piece of equipment is $30,000. It is expected to yield a cash return per
month of $1000. What is the payback period?

3.24 After retrofitting an extruder, the net additional income after taxes is expected to be
$5000 per year. The remodeling cost was $50,000. What is the return on investment in
percent?

3.25 Your minimum acceptable rate of return (MARR) is 18%, the project life is 10 years,
and no alternatives have a salvage value. The following mutually exclusive alternatives
have been proposed. Rank them, and recommend the best alternative.

A B C D : E

Capital investment, $ 38,000 50,000 55,000 60,000 70,000
Net annual earnings, $ 11,000 14,100 16,300, 16,800 19,200
IRR, % 26.1 25.2 26.9 25.0 24.3

3.26 You have four choices of equipment (as shown in the following table) to solve a pol-
lution control problem. The choices are mutually exclusive and you must pick one.
Assuming a useful life of 10 years for each design, no market value, and a pretax min-
imum acceptable rate of return (MARR) of 15% per year, rank them and recommend

a choice.
Alternative D, D, D, D,
Capital investment, $1000 600 760 1,240 1,600
Annual expenses, $1000 780 728 630 574

P (present value), $1000 —$4,515 —$4,414 —$4,402 —$4,481
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3.27 A company invests $1,000,000 in a new control system for a plant. The estimated
annual reduction in cost is calculated to be $162,000 in each of the next 10 years. What
is the
(a) Return on investment (ROI)

(b) Internal rate of return (IRR)
Ignore income tax effects and depreciation to simplify the calculations.

3.28 The following table gives a comparison of costs for two types of heaters to supply heat
to an oil stream in a process plant at a rate of 73,500,000 Btu/h:

Oil convection Reotary air preheater

Heat input in 10° Btu/h 114.0 96.5
Thermal efficiency, % 64.5 76.1
Total fuel cost (at $1.33/per 10° Btu) for 1 year $1,261,000 $1,068,000
Power at $0.06/kWh for 1 year 48,185
Capital cost (installed), $ $1,888,000 $2,420,000

Assume that the plant in which this equipment is installed will operate 10 years, that
a tax rate of 34%/year is applicable, and that a charge of 10% of the capital cost per
year for depreciation will be employed over the entire 10-year period, that fixed
charges including maintenance incurred by installation of this equipment will amount
to 10%/year of the investment, and that a minimum acceptable return rate on invested
capital after taxes and depreciation is 15%. Determine which of the two alternative
installations should be selected, if any.

3. 29 You are proposing to buy a new, improved reboiler for a distillation column that will
save energy. You estimate that the initial investment will be $140,000, annual savings
will be $25,000 per year, the useful life will be 12 years, and the salvage value at the
end of that time will be $40,000. You are ignoring taxes and inflation, and your pretax
constant dollar minimum acceptable rate of return (MARR) is 10% per year. Your boss
wants to see a sensitivity diagram showing the present worth as a function of +50%
changes in annual savings and the useful life.

(a) What is the present value P of your base case?

(b) You calculate the P of —50% annual savings to be —$42,084 and the P for +50%
annual savings to be $128,257. The P at —50% life is —$8,539. What is the P at
+50% life? ‘

(c) Sketch the P sensitivity diagram for these two variables [P vs the change in the
base (in %)]. To which of the two variables is the decision most sensitive?
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PART II DESCRIBES modern techniques of optimization and translates these con-
cepts into computational methods and algorithms. Because the literature on opti-
mization techniques is vast, we focus on methods that have proved effective for a
wide range of problems. Optimization methods have matured sufficiently during
the past 20 years so that fast and reliable methods are available to solve each impor-
tant class of problem.

Seven chapters make up Part II of this book, covering the following areas:

1. Mathematical concepts (Chapter 4)

2. One-dimensional search (Chapter 5)

3. Unconstrained multivariable optimization (Chapter 6)
4. Linear programming (Chapter 7)

5. Nonlinear programming (Chapter 8)

.6. Optimization involving discrete variables (Chapter 9)
7. Global optimization (Chapter 10)

The topics are grouped so that unconstrained methods are presented first, followed

by constrained methods. The last two chapters in Part II deal with discontinuous
(integer) variables, a common category of problem in chemlcal engineering, but one
quite difficult to solve without great effort.

As optimization methods as well as computer hardware and software have
improved over the past two decades, the degree of difficulty of the problems that
can be solved has expanded significantly. Continued improvements in optimization
algorithms and computer technology should enable optimization of large-scale
nonlinear problems involving thousands of variables, both continuous and integer,
some of which may be stochastic in nature.
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TO UNDERSTAND THE strategy of optimization procedures, certain basic concepts
must be described. In this chapter we examine the properties of objective functions
and constraints to establish a basis for analyzing optimization problems. We iden-
tify those features that are desirable (and also undesirable) in the formulation of an
optimization problem. Both qualitative and quantitative characteristics of functions
are described. In addition, we present the necessary and sufficient conditions to
guarantee that a supposed extremum is indeed a minimum or a maximum.

4.1 CONTINUITY OF FUNCTIONS

In carrying out analytical or numerical optimization you will find it preferable and
more convenient to work with continuous functions of one or more variables than
with functions containing discontinuities. Functions having continuous derivatives
are also preferred. Case A in Figure 4.1 shows a discontinuous function. Is case B
also discontinuous?

We define the property of continuity as follows. A function of a single variable
x is continuous at a point x, if

flxo) exists

lim f(x) exists

x—xg

lim f(x) = f(x,)

X—>Xy
If f{x) is continuous at every point in region R, then f(x) is said to be continuous
throughout R. For case B in Figure 4.1, the function of x has a “kink” in it, but f(x)

does satisfy the property of continuity. However, f'(x) = dfix)/dx does not. There-
fore, the function in case B is continuous but not continuously differentiable.

f(xy) f(xz)

X, X2

Case A Case B

FIGURE 4.1
Functions with discontinuities in the function or derivatives.
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EXAMPLE 4.1 ANALYSIS OF FUNCTIONS FOR CONTINUITY

Are the following functions continuous? (a) fix) = 1/x; (b) f (x) = In x. In each case
specify the range of x for which f{x) and f'(x) are continuous.

Solution

(a) fix) = 1/x is continuous except at x = 0; f0) is not defined. f'(x) = —1/x* is con-
tinuous except at x = 0.

(b) fix) = In x is continuous for x > 0. For x = 0, In (x) is not defined. As to f'(x) =
1/x, see (a).

A discontinuity in a function may or may not cause difficulty in optimization.
In case A in Figure 4.1, the maximum occurs reasonably far from the discontinuity
which may or may not be encountered in the search for the optimum. In case B, if
a method of optimization that does not use derivatives is employed, then the “kink”
in f(x) is probably unimportant, but methods employing derivatives might fail,
because the derivative becomes undefined at the discontinuity and has different
signs on each side of it. Hence a search technique approaches the optimum, but then
oscillates about it rather than converges to it.

Objective functions that allow only discrete values of the independent vari-
able(s) occur frequently in process design because the process variables assume
only specific values rather than continuous ones. Examples are the cost per unit
diameter of pipe, the cost per unit area for heat exchanger surface, or the insulation
cost considered in Example 1.1. For a pipe, we might represent the installed cost as
a function of the pipe diameter as shown in Figure 4.2 [see also Noltie (1978)]. For

Cost ®

Commercially available
pipe diameters

FIGURE 4.2
Installed pipe cost as a function of diameter.
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Cost

I | ] |

Diameter

FIGURE 4.3
Piecewise linear approximation to cost function.

most purposes such a cost function can be approximated as a continuous function
because of the relatively small differences in available pipe diameters. You can then
disregard the discrete nature of the function and optimize the cost as if the diame-
ter were a continuous variable. For example, extend the function of Figure 4.2 to a
continuous range of diameters by interpolation. If linear interpolation is used, then
the extended function usually has discontinuous derivatives at each of the original
diameters, as shown in Figure 4.3. As mentioned earlier, this step can cause prob-
lems for derivative-based optimizers. A remedy is to interpolate with quadratic or
cubic functions chosen so that their first derivatives are continuous at the break
points. Such functions are called splines (Bartela et al., 1987). Once the optimum
value of the diameter is obtained for the continuous function, the discretely valued
diameter nearest to the optimum that is commercially available can be selected. A
suboptimal value for installed cost results, but such a solution should be adequate
for engineering purposes because of the narrow intervals between discrete values of
the diameter.

EXAMPLE 4.2 OPTIMIZATION INVOLVING AN INTEGER-
VALUED VARIABLE

Consider a catalytic regeneration cycle in which there is a simple trade-off between
costs incurred during regeneration and the increased revenues due to the regenerated
catalyst. Let x; be the number of days during which the catalyst is used in the reactor
and x, be the number of days for regeneration. The reactor start-up crew is only avail-
able in the morning shift, so x, + x, must be an integer.

, We assume that the reactor feed flow rate g (kg/day) is constant as is the cost of
the feed C, ($/kg), the value of the product C, ($/kg), and the regeneration cost C;
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($/regeneration cycle). We further assume that the catalyst deteriorates gradually
according to the linear relation

d =10 — kx,

where 1.0 represents the weight fraction conversion of feed at the start of the operat-
ing cycle, and k is the deterioration factor in units of weight fraction per day. Define
an objective function and find the optimal value of x;.

Solution. For one complete cycle of operation and regeneration, the objective func-
tion for the total profit per day comprises

Profit
Day

= Product value — Feed cost

— (Regeneration cost per cycle) - (Cycles per day)

or in the defined notation

o qCx\dyyy — qCixy — G
flx) = . (a)

x1+x2

where d,,, = 1.0 — (kx;/2). _

The maximum daily profit for an entire cycle is obtained by maximizing Equa-
tion (a) with respect to x,. As a first trial, we allow x, to be a continuous variable.
When the first derivative of Equation (a) is set equal to zero and the resulting equa-
tion solved for x,, the optimum is '

2 Cyx C, \ 12
x‘l)Pt = - X3 + [x% + <'I'€')(x2 - ézz + q_C:;Z)]

Suppose x, = 2, k; = 0.02, g = 1000, C,=1.0, C; = 0.4, and C; = 1000. Then x,°**
= 12.97 (rounded to 13 days if x, is an integer).
Clearly, treating x, as a continuous variable may be improper if x, is 1, 2, 3, and
" s0 on, but is probably satisfactory if x; is 15, 16, 17, and so on. You might specify x,;
in terms of shifts of 4-8 h instead of days to obtain finer subdivisions of time.

In real life, other problems involving discrete variables may not be so
nicely posed. For example, if cost is a function of the number of discrete pieces of
equipment, such as compressors, the optimization procedure cannot ignore the inte-
ger character of the cost function because usually only a small number of pieces of
equipment are involved. You cannot install 1.54 compressors, and rounding off to 1
or 2 compressors may be quite unsatisfactory. This subject will be discussed in
more detail in Chapter 9.
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4.2 NLP PROBLEM STATEMENT

A general form for a nonlinear program (NLP) is

Minimize:  f(x)

Subjectto: a; = g(x) = b, i=1,...,m “4.1)
and L=x=uy j=1,...,n
In this problem statement, x is a vector of n decision variables (x;, . . ., x,), f

is the objective function, and the g; are constraint functions. The a; and b, are spec-
ified lower and upper bounds on the constraint functions with a; < b, and [, u; are
lower and upper bounds on the variables with [; = u;. If a; = b;, the ith constraint
is an equality constraint. If the upper and lower limits on g; correspond to a; = —o0
and b; = +o0, the constraint is unbounded. Similar comments apply to the variable
bounds, with /; = u; corresponding to a variable x; whose value is fixed, and /; =
—oo and u; = +oo specifying a free variable.

Problem 4.1 is nonlinear if one or more of the functions f, g, . . . , g,, are non-
linear. It is unconstrained if there are no constraint functions g; and no bounds on
the x;, and it is bound-constrained if only the x; are bounded. In linearly constrained
problems all constraint functions g; are linear, and the objective fis nonlinear. There
are special NLP algorithms and software for unconstrained and bound-constrained
problems, and we describe these in Chapters 6 and 8. Methods and software for
solving constrained NLPs use many ideas from the unconstrained case. Most mod-
ern software can handle nonlinear constraints, and is especially efficient on linearly
constrained problems. A linearly constrained problem with a quadratic objective is
called a quadratic program (QP). Special methods exist for solving QPs, and these
are often faster than general purpose optimization procedures.

A vector x is feasible if it satisfies all the constraints. The set of all feasible
points is called the feasible region F. If F is empty, the problem is infeasible, and
if feasible points exist at which the objective fis arbitrarily large in a max problem
or arbitrarily small in a min problem, the problem is unbounded. A point (vector)
x* is termed a local extremum (minimum) if

f(x*) = f(x) 4.2)

for all x in a small neighborhood (region) N in F around x* with x distinct from x*.
Despite the fact that x* is a local extremum, other extrema may exist outside the
neighboorhood N meaning that the NLP problem may have more that one local
minimum if the entire space of x is examined. Another important concept relates to
the idea of a global extremum, the unique solution of the NLP problem. A global

" minimum occurs if Equation (4.2) holds for all x € F. Analogous concepts exist for
local maxima and the global maximum. Most (but not all) algorithms for solving
NLP problems locate a local extremum from a given starting point.

NLP geometry
A typical feasible region for a problem with two variables and the constraints

x; = 0, g(x) =0, i =12 j=12
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g1x)=0

NN

8x)=0

\\ \ X

FIGURE 4.4
Feasible region (region not shaded and its boundaries).

is shown as the unshaded region in Figure 4.4. Its boundaries are the straight and
curved lines x; = 0 and g(x) = Ofori =1,2,j = 1, 2.
As another example, consider the problem

Minimize f = (x; — 3)* + (x, — 4)?

" subject to the linear constraints

x =0
x, =0
5—x; —x=0
25+ x;, —x =0

This problem is shown in Figure 4.5. The feasible region is defined by linear
constraints with a finite number of corner points. The objective function, being non-
linear, has contours (the concentric circles, level sets) of constant value that are not
parallel lines, as would occur if it were linear. The minimum value of f corresponds
to the contour of lowest value having at least one point in common with the feasi-
ble region, that is, at x;* = 2, x,* = 3. This is not an extreme point of the feasible
set, although it is a boundary point. For linear programs the minimum is always at
an extreme point, as shown in Chapter 7.

Furthermore, if the objective function of the previous problem is changed to

ho=( — 2)2 + (x — 2)2
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FIGURE 4.5
The minimum occurs on the boundary of the constraint set.

as depicted in Figure 4.6, the minimum is now at x; = 2, x, = 2, which is not a
boundary point of the feasible region, but is the unconstrained minimum of the non-
linear function and satisfies all the constraints.

Neither of the problems illustrated in Figures 4.5 and 4.6 had more than one
optimum. It is easy, however, to construct nonlinear programs in which local
optima occur. For example, if the objective function f; had two minima and at least
one was interior to the feasible region, then the constrained problem would have
two local minima. Contours of such a function are shown in Figure 4.7. Note that
the minimum at the boundary point x; = 3, x, = 2 is the global minimum at f = 3;
the feasible local minimum in the interior of the constraints is at f = 4.

Although the examples thus far have involved linear constraints, the chief non-
linearity of an optimization problem often appears in the constraints. The feasible
region then has curved boundaries. A problem with nonlinear constraints may have
local optima, even if the objective function has only one unconstrained optimum.
Consider a problem with a quadratic objective function and the feasible region
shown in Figure 4.8. The problem has local optima at the two points a and b
because no point of the feasible region in the immediate vicinity of either point
yields a smaller value of f.
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FIGURE 4.6
The minimum occurs in the interior of the constraint set.

In summary, the optimum of a nonlinear programming problem is, in general,
not at an extreme point of the feasible region and may not even be on the boundary.
Also, the problem may have local optima distinct from the global optimum. These
properties are direct consequences of nonlinearity. A class of nonlinear problems can
be defined, however, that are guaranteed to be free of distinct local optima. They are
called convex programming problems and are considered in the following section.

4.3 CONVEXITY AND ITS APPLICATIONS

The concept of convexity is useful both in the theory and applications of optimiza-
tion. We first define a convex set, then a convex function, and lastly look at the role
played by convexity in optimization.

Convex set ,

A set of points (or a region) is defined as a convex set in n-dimensional space
if, for all pairs of points x; and X, in the set, the straight-line segment joining them
is also entirely in the set. Figure 4.9 illustrates the concept in two dimensions.
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X2

FIGURE 4.7
Local optima due to objective function.

A mathematical statement of a convex set is

For every pair of points x; and X, in a convex set, the point x given by a lin-
ear combination of the two points

x=vyx,+t(1—7y)x, 0=y=1

is also in the set. The convex region may be closed (bounded) by a set of functions,
such as the sets A and B in Figure 4.9 or may be open (unbounded) as in Figures
4.10 and 4.12. Also, the intersection of any number of convex set is a convex set.

Convex function

Next, let us examine the matter of a convex function. The concept of a convex
function is illustrated in Figure 4.10 for a function of one variable. Also shown is a
concave function, the negative of a convex function. (If f(x) is convex, —f(x) is
concave.) A function f(x) defined on a convex set F is said to be a convex func-
tion if the following relation holds :

flyx, + (1 = v)x,] = yf(x)) + (1 — v)f(x2)
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2%

FIGURE 4.8
Local optima due to feasible region.

where 7 is a scaler with the range 0 = y =< 1. If only the inequality sign holds, the
function is said to be not only convex but strictly convex. [If f(x) is strictly con-
vex, —f(x) is strictly concave.] Figure 4.10 illustrates both a strictly convex and a
strictly concave function. A convex function cannot have any value larger than the
values of the function obtained by linear interpolation between x, and x, (the cord
‘between x, and x, shown in the top figure in Figure 4.10). Linear functions are both
convex and concave, but not strictly convex or concave, respectively. An important
result of convexity is

If f(x) is convex, then the set
R = {x|f(x) = k}

is convex for all scalers k.

The result is illustrated in Figure 4.11 in which a convex quadratic function is cut
by the plane f(x) = k. The convex set R projected on to the x,—x, plane com-
prises the boundary ellipse plus its interior.

The convex programming problem
An important result in mathematical programming evolves from the concept of
convexity. For the nonlinear programming problem called the convex programming
problem /
Minimize:  f(x)
Subjectto: g(x) =<0 i=1,....,m 4.3)


admin
Highlight


124 PART II: Optimization Theory and Methods

Convex set

Convex set

All of the line
segment is
‘not in the set

Nonconvex set

FIGURE 4.9
Convex and nonconvex sets.

1in which (a) f(x) is a convex function, and (b) each inequality constraint is a con-
vex function (so that the constraints form a convex set), the following property can
be shown to be true

The local minimum of f(x) is also the global minimum.

Analogously, a local maximum is the global maximum of f(x) if the objective func-
tion is concave and the constraints form a convex set.

Role of convexity
If the constraint set g(x) is nonlinear, the set

R = {x|g(x) = 0}
is generally not convex. This is evident geometrically because most nonlinear func-
tions have graphs that are curved surfaces. Hence the set R is usually a curved sur-
face also, and the line segment joining any two points on this surface generally does
not lie on the surface. .
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Convex function
Concave function
Convex function
FIGURE 4.10

Convex and concave functions of one variable.
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f®)

Convex function

Plane f (x) =k

X1

R={x1f(x) <k}

FIGURE 4.11
Illustration of a convex set formed by a plane f(x) = k cutting a convex function.

- As a consequence, the problem

Minimize: f(x)
gl(X)SO i = 1, P ((]
h(x) =0 k=1, ...,r<n

may not be a convex programming problem in the variables x,,...,x, if any of
the functions h,(x) are nonlinear. This, of course, does not preclude efficient solu-
tion of such problems, but it does make it more difficult to guarantee the absence
of local optima and to generate sharp theoretical results.

In many cases the equality constraints may be used to eliminate some of the
variables, leaving a problem with only inequality constraints and fewer variables.
Even if the equalities are difficult to solve analytically, it may still be worthwhile
solving them numerically. This is the approach taken by the generalized reduced
gradient method, which is described in Section 8.7.

Although convexity is desirable, many real-world problems turn out to be non-
convex. In addition, there is no simple way to demonstrate that a nonlinear problem
is a convex problem for all feasible points. Why, then is convex programming stud-
ied? The main reasons are

Subject to:

1. When convexity is assumed, many significant mathematical results have been
derived in the field of mathematical programming.

2. Often results obtained under assumptions of convexity can give insight into the
properties of more general problems. Sometimes, such results may even be car-

- ried over to nonconvex problems, but in a weaker form.
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For example, it is usually impossible to prove that a given algorithm will find
the global minimum of a nonlinear programming problem unless the problem is
convex. For nonconvex problems, however, many such algorithms find at least a
local minimum. Convexity thus plays a role much like that of linearity in the study
of dynamic systems. For example, many results derived from linear theory are used
in the design of nonlinear control systems.

Determination of convexity and concavity

The definitions of convexity and a convex function are not directly useful in
establishing whether a region or a function is convex because the relations must be
applied to an unbounded set of points. The following is a helpful property arising
from the concept of a convex set of points. A set of points X satisfying the relation

xH(x)x =1

is convex if the Hessian matrix H(x) is a real symmetric positive-semidefinite
matrix. H(x) is another symbol for V?f(x), the matrix of second partial derivative
of f(x) with respect to each x;

H(x) = H = Vf(x)

The status of H can be used to identify the character of extrema. A quadratic form
Q(x) = x"Hx is said to be positive-definite it Q(x) > 0 forall x # 0, and said to
be positive-semidefinite if Q(x) = 0 for all x # 0. Negative-definite and negative-
semidefinite are analogous except the inequality sign is reversed. If Q (x) is positive-
definite (semidefinite), H(x) is said to be a positive-definite (semidefinite) matrix.
These concepts can be summarized as follows:

1. H is positive-definite if and only if x"Hx is >0 forall x # 0.

2. H is negative-definite if and only if x"Hx is <O forall x # 0.

3. H is positive-semidefinite if and only if x"Hx is = O forall x # 0.
4. H is negative-semidefinite if and only if x"Hx is < O forall x # 0.
5. H is indefinite if xX"Hx < 0 for some x and > O for other x.

It can be shown from a Taylor series expansion that if f(x) has continuous second

partial derivatives, f(x) is concave if and only if its Hessian matrix is negative-

semidefinite. For f(x) to be strictly concave, H must be negative-definite. For f(x)

to be convex H(x) must be positive-semidefinite and for f(x) to be stnctly convex,
H(x) must be positive-definite.

EXAMPLE 4.3 ' ANALYSIS FOR CONVEXITY AND CONCAVITY

For each of these functions

(@) f(x)=3x"

(b) f(x) =2x - -
(c) f(x)= —5x |

(d) flx) =2x*—x°
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determine if f(x) is convex, concave, strictly convex, strictly concave, all, or none of
these classes in the range —oo = x = oo0.

Solution

(a) f"(x) = 6, always positive, hence f(x) is both strictly convex and convex.

(b) f"(x) = O for all values of x, hence f(x) is convex and concave. Note straight
lines are both convex and concave simultaneously.

(c) f"(x) = —10, always negative, hence f(x) is both strictly concave and concave.

(d) f"(x) = 6 — 3x; may be positive or negative depending on the value of x, hence
f(x) is not convex or concave over the entire range of x.

For a multivariate function, the nature of convexity can best be evaluated by
~ examining the eigenvalues of f(x) as shown in Table 4.1 We have omitted the indef-
inite case for H, that is when f(x) is neither convex or concave.

TABLE 4.1
Relatlonshlp between the character of f(x) and the
state of H(x) »
All the

eigenvalues

f(x) is H(x) is of H(x) are
Strictly convex Positive-definite >0
Convex Positive-semidefinite =0
Concave Negative-semidefinite =0
Strictly concave Negative-definite ' <0

Now let us further illustrate the ideas presented in this section by some examples.

EXAMPLE 4.4 DETERMINATION OF POSITIVE-DEFINITENESS
OF A FUNCTION

Classify the function f(x) = 2x} — 3x,x, + 2x3 using the categories in Table 4.1, or
state that it does not belong in any of the categories.

Solution
9 - 9 02
AN (SR B
axl axl 8x2
P 82 2 _
) g HW P H(x)=[ 4 3]
0x, 0x;0x,  0x,0x; -3 4

The eigenvalues of H are 7 and 1, hence H(x) is positive-definite. Consequently, f(x)
is strictly convex (as well as convex). '
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EXAMPLE 4.5 DETERMINATION OF POSITIVE-DEFINITENESS
OF A FUNCTION

Repeat the analysis of Example 4.4 for fix) = x,2 + x,x, + 2x, + 4

o[} ]

The eigenvalues are 1 + V2 and 1 - V2 , Or one positive or one negative value.
Consequently, f{x) does not fall into any of the categories in Table 4.1. We conclude
that no unique extremum exists.

Solution

EXAMPLE 4.6 DETERMINATION OF CONVEXITY AND
CONCAVITY '

Determine if the following function
fix) =2x;, +3x,+ 6
is convex or concave.

Solution

wo-[o ]

~ hence the function is both convex and concave.

- EXAMPLE 4.7 -  DETERMINATION OF CONVEXITY OF A
- FUNCTION

Consider the following objective function: Is it convex?

fix) = 2x} + 2xx, + 1.5x% + Tx; + 8x, + 24
Solution

), ), W o) _

ax% ax% axia.xZ axZaxl

wo-[: ]

The eigenvalues of H(x) are 5.56 and 1.44. Because both eigenvalues are positive, the
function is strictly convex (and convex, of course) for all values of x; and x,.

Therefore the Hessian matrix is
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EXAMPLE 4.8 DETECTION OF A CONVEX REGION

Does the following set of constraints that form a closed region form a convex region?
X, —x= =2
Solution. A plot of the two functions indicates that the region circumscribed is

closed. The arrows in Figure E4.8 designate the directions in which the 1nequa11t1es
hold. Write the inequality constraints as g; = 0. Therefore

gl(X)=_x1+X2_120
gx) =x,—x,+2=0

That the enclosed region is convex can be demonstrated by showing that both g,(x)
and g,(x) are concave functions:

=20
H[g,(x)] = [ 0 O} negative definite
0
H[g,(x)] = {g O] negative semidefinite

Because all eigenvalues are zero or negative, according to Table 4.1 both g, and g, are
concave and the region is convex.

X2

g =-x +x-1=0

£X)=x-x+2=0

FIGURE E4.8
Convex region composed of two concave functions.
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EXAMPLE 4.9 CONSTRUCTION OF A CONVEX REGION

Construct the region given by the following inequality constraints; is it convex?

X=6x =6,x,=Z0;,x; +tx,=6;x,=0

Solution. See Figure E4.9 for the region delineated by the inequality constraints. By
visual inspection, the region is convex. This set of linear inequality constraints forms
a convex region because all the constraints are concave. In this case the convex region
is closed.

FIGURE E4.9
Diagram of region defined by linear inequality constraints.

44 INTERPRETATION OF THE OBJECTIVE FUNCTION IN TERMS
OF ITS QUADRATIC APPROXIMATION

If a function of two variables is quadratic or approximated by a quadratic function
f(X) = by + byx; + byx, + byx3 + byx3 + b;xx,, then the eigenvalues. of
H(x) can be calculated and used to interpret the nature of f{x) at x*. Table 4.2 lists
some conclusions that can be reached by examining the eigenvalues of H(x) for a
function of two variables, and Figures 4.12 through 4.15 illustrate the different
types of surfaces corresponding to each case that arises for quadratic function. By
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TABLE 4.2
Geometric interpretation of a quadratic function
. Character of
Eigenvalue Signs Types of Geometric center of
Case relations e e, contours interpretation contours Figure
1 e, =e, —  —  Circles Circular hill Maximum 4.12
2 e, =e, + +  Circles Circular valley Minimum 4.12
3 e, > e - —  Ellipses Elliptical hill Maximum 4.12
4 e >e + +  Ellipses Elliptical valley Minimum . 4.12
5 le)| = le,l + —  Hyperbolas Symmetrical Saddle point  4.13
' saddle
6 le)| = leyl - +  Hyperbolas Symmetrical Saddle point  4.13
saddle :
7 e, >e, + —  Hyperbolas Elongated saddle Saddle point 4.13
8 e, =0 - Straight lines Stationary ridge* None 4.14
9 e, =0 + Straight lines Stationary valley*  None 4.14
10 e,=0 - Parabolas Rising ridge** At 4.15
11 e, =0 + Parabolas Falling valley** At o 4.15

*These are “degenerate” surfaces.
*The condition of rising or falling must be evaluated from the linear terms in f(x).

f(x)

Xy

FIGURE 4.12 :

Geometry of a quadratic objective function of two independent
variables—elliptical contours. If the eigenvalues are equal, then the
contours are circles.

implication, analysis of a function of many variables via examination of the eigen-
values can be conducted, whereas contour plots are limited to functions of only two
or three variables.



CHAPTER 4: Basic Concepts of Optimization 133

fx)

FIGURE 4.13
Geometry of a quadratic objective function of two

independent variables—saddle point.

J(x)
X2
X1
FIGURE 4.14

Geometry of a quadratic objective function of two independent
variables—stationary valley.
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f(x)

X2

FIGURE 4.15
Geometry of second-order objective function of two independent variables—
falling valley.

Figure 4.12 corresponds to objective functions in well-posed optimization
problems. In Table 4.2, cases 1 and 2 correspond to contours of f(x) that are con-
centric circles, but such functions rarely occur in practice. Elliptical contours such
as correspond to cases 3 and 4 are most likely for well-behaved functions. Cases 5
to 10 correspond to degenerate problems, those in which no finite maximum or
minimum or perhaps nonunique optima appear.

For well-posed quadratic objective functions the contours always form a con-
vex region; for more general nonlinear functions, they do not (see the next section
for an example). It is helpful to construct contour plots to assist in analyzing the
performance of multivariable optimization techniques when applied to problems of
two or three dimensions. Most computer libraries have contour plotting routines to
generate the desired figures.

As indicated in Table 4.2, the eigenvalues of the Hessian matrix of A(x) indicate
the shape of a function. For a positive-definite symmetric matrix, the eigenvectors
(refer to Appendix A) form an orthonormal set. For example, in two dimensions, if
the eigenvectors are v, and v,, viv, = O (the eigenvectors are perpendicular to
each other). The eigenvectors also correspond to the directions of the principal axes
- of the contours of f{x).

One of the primary requirements of any successful optimization technique is
the ability to move rapidly in a local region along a narrow valley (in minimiza-
tion) toward the minimum of the objective function. In other words, an efficient
algorithm selects a search direction that generally follows the axis of the valley
rather than jumping back and forth across the valley. Valleys (ridges in maximiza-
tion) occur quite frequently, at least locally, and these types of surfaces have the
potential to slow down greatly the search for the optimum. A valley lies in the
direction of the eigenvector associated with a small eigenvalue of the Hessian

\
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matrix of the objective function. For example, if the Hessian matrix of a quadratic

function is
1 0
H =
0 10)

then the eigenvalues are e, = 1 and e, = 10. The eigenvector associated with e, =
1, that is, the x, axis, is lined up with the valley in the ellipsoid. Variable transfor-
mation techniques can be used to allow the problem to be more efficiently solved
by a search technique (see Chapter 6).

Valleys and ridges corresponding to cases 1 through 4 can lead to a minimum
or maximum, respectively, but not for cases 8 through 11. Do you see why?

4.5 NECESSARY AND SUFFICIENT CONDITIONS FOR AN
EXTREMUM OF AN UNCONSTRAINED FUNCTION

Figure 4.16 illustrates the character of f{x) if the objective function is a function of a
single variable. Usually we are concerned with finding the minimum or maximum of
a multivariable function f{x). The problem can be interpreted geometrically as find-
ing the point in an n-dimension space at which the function has an extremum. Exam-
ine Figure 4.17 in which the contours of a function of two variables are displayed.

An optimal point x* is completely specified by satisfying what are called the
necessary and sufficient conditions for optimality. A condition N is necessary for a
result R if R can be true only if the condition is true (R=>N). The reverse is not
true, however, that is, if NV is true, R is not necessarily true. A condition is sufficient
for a result R if R is true if the condition is true (S=>R). A condition T is neces-
sary and sufficient for result R if R is true if and only if T is true (T <> R).

f(x)

FIGURE 4.16

A function exhibiting different types of stationary points.

Key: a—inflection point (scalar equivalent to a saddle point);
b—global maximum (and local maximum); c—local minimum;
d—local maximum :
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X2

N
=

FIGURE 4.17a
A function of two variables with a single stationary point
(the extremum).

.

The easiest way to develop the necessary and sufficient conditions for a mini-
mum or maximum of f{x) is to start with a Taylor series expansion about the pre-
sumed extremum x*

f(x) = f(x*) + VIf(x*) Ax + 3(AxT) V¥(x*)Ax + 0,(Ax) + - (4.4)

where Ax = x — x*, the perturbation of x from x*. We assume all terms in Equa-
tion (4.4) exist and are continuous, but will ignore the terms of order 3 or higher
[O,(AXx)], and simply analyze what occurs for various cases involving just the terms
through the second order.

We defined a local minimum as a point x* such that no other point in the vicin-
ity of x* yields a value of f{x) less than f (x*), or

fx) —fx*) =0 4.5)

x* is a global minimum if Equation (4.5) holds for any x in the n-dimensional space
of x. Similarly, x* is a local maximum if

fix) — fix*¥) =<0 (4.6)
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X3

71+

FIGURE 4.17b
A function of two variables with three stationary
points and two extrema, A and B.

. Examine the second term on the right-hand side of Equation (4.4): V7f(x*) Ax.
Because Ax is arbitrary and can have both plus and minus values for its elements,
we must insist that Vf (x*) = 0. Otherwise the resulting term added to f(x*) would
violate Equation (4.5) for a minimum, or Equation (4.6) for a maximum. Hence, a
necessary condition for a minimum or maximum of f(x) is that the gradient of f(x)
vanishes at x*

Vf(x*) =0 4.7)

that is, x* is a stationary point.

With the second term on the right-hand side of Equation (4.4) forced to be zero,
we next examine the third term: 3(Ax7) V2f(x*)Ax. This term establishes the char-
acter of the stationary point (minimum, maximum, or saddle point). In Figure 4.17b,
A and B are minima and C is a saddle point. Note how movement along one of the
perpendicular search directions (dashed lines) from point C increases f{x), whereas
movement in the other direction decreases f(x). Thus, satisfaction of the necessary
conditions does not guarantee a minimum or maximum.

To establish the existence of a minimum or maximum at x*, we know from
Equation (4.4) with Vf (x*) = 0 and the conclusions reached in Section 4.3 con-
cerning convexity that for Ax # 0 we have the following outcomes
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V3 (x*) = H(x*) AxT V¥ (x*) Ax Near x*, f(x) — f(x*)

Positive-define >0 Increases

Positive-semidefinite =0 Possibly increases

Negative-definite <0 Decreases

Negative-semidefinite =0 Possibly decreases

Indefinite Both <0 and =0 Increases, decreases, neither
depending on Ax

Consequently, x* can be classified as

V2(x*) = H(x*) x*

Positive-definite Unique (“isolated”) minimum
Negative-definite Unique (“isolated””) maximum

These two conditions are known as the sufficiency conditions.
In summary, the necessary conditions (items 1 and 2 in the following list) and
the sufficient condition (3) to guarantee that x* is an extremum are as follows:

1. fix) is twice differentiable at x*.

2. Vf(x*) = 0, that is, a stationary point exists at x*,

3. H(x*) is positive-definite for a minimum to exist at x*, and negatlve -definite for
a maximum to exist at x*.

Of course, a minimum or maximum may exist at x* even though it is not possible to
demonstrate the fact using the three conditions. For example, if fix) = x*3, x* = 0
is a minimum but H(0) is not defined at x* = 0, hence condition 3 is not satisfied.

EXAMPLE 4.10 CALCULATION OF A MINIMUM OF f(x)

Does f(x) = x* have an extremum? If so, what is the value of x* and f(x*) at the
extremum?

Solution
f'(x) = 4 f'x) = 1242

Setf'(x) = 0 and solve for x; hence x = 0 is a stationary point. Also, f"(0) = 0, mean-
ing that condition 3 is not satisfied. Figure E4.10 is a plot of f{ix) = x* Thus, a mini-
mum exists for f(x) but the sufficiency condition is not satisfied.

If both first and second derivatives vanish at the stationary point, then further
analysis is required to evaluate the nature of the function. For functions of a single
variable, take successively higher derivatives and evaluate them at the stationary
point. Continue this procedure until one of the higher derivatives is not zero (the nth
one); hence, f'(x*), f'(x*), . . ., f® D(x*) all vanish. Two cases must be analyzed:

1. If n is even, the function attains a maximum or a minimum; a positive sign of f®
indicates a minimum, a negative sign a maximum.
2.If n is odd, the function exhibits a saddle point.

For more details refer to Beveridge and Schechter (1970).
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f(x)

| |
-1 0 1 x

FIGURE E4.10

For application of these guidelines to f{ix) = x4, you will find d*fx)/dx* = 24 for
which n is even and the derivative is positive, so that a minimum exists.

EXAMPLE 4.11 CALCULATION OF EXTREMA

Identify the stationary points of the following function (Fox, 1971), and determine if
any extrema exist.

f(X) = 4 + 4.5x1 - 4x2 + x% + 2x% - 2x1x2 + x‘{ — zx%xz

Solution. For this function, three stationary points can be located by setting VAix) = 0:
f (x)

x4

3f (x)

8x2

= —4+4dx,—2x, — 27 =0 ()

The set of nonlinear equations (a) and (b) has to be solved, say by Newton’s method,
to get the pairs (x,, x,) as follows: '

Stationary point Hessian matrix
Point (xg5 X5) f(x) .. eigenvalues  Classification
B (1.941, 3.854) 0.9855 37.03 0.97 Local minimum
A (—1.053, 1.028) —0.5134 10.5. 35 Local minimum
(also the global
minimum)
C (0.6117, 1.4929) 2.83 7.0 —2.56  Saddle point

Figure 4.17b shows contours for the objeéﬁve function in this example. Note that
the global minimum can only be identified by evaluating f(x) for all the local minima.
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For general nonlinear objective functions, it is usually difficult to ascertain the
nature of the stationary points without detailed examination of each point.

EXAMPLE 4.12

In many types of processes such as batch constant-pressure filtration or fixed-bed ion
exchange, the production rate decreases as a function of time. At some optimal time
t°?t, production is terminated (at P°') and the equipment is cleaned. Figure E4.12a
illustrates the cumulative throughput P(¢) as a function of time ¢ for such a process.
For one cycle of production and cleaning, the overall production rate is

P(t)

t+ 1

R(t) = (@)

where R(r) = the overall production rate 'pér cycle (mass/time)
= the cleaning time (assumed to be constant)

Determine the maximum production rate and show that PP is indeed the maxi-
mum throughout.

Solution. Differentiate R(t) with respect to ¢, and equate the derivative to 0:

dR(t) -~ — P(t) + [dP()/dt](t + t.) B
d (t +1.)? -
PPt = d}jTEt) L) )

The geometric interpretation of Equation (b) is the classiéal result (Waﬁ(er etal, 1937)
that the tangent to P(f) at P°" intersects the time axis-at —¢. Examme Figure E4.12b.
The maximum overall production rate is

P(t)

portf- — ——— —

0 opt t

FIGURE E4.12a
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P(t)
Slope = 2P®)
dt opt
PR ——— —
I
|
|
I
|
I
|
0 1
0 t
{ t, topt

FIGURE E4.12b

dP(t)
dt

2
d dl:gt) (the slope) is negative

FIGURE E4.12¢

R = P (o)
1P + ¢,
Does P°P* meet the sufficiency condition to be a maximum? Is
d*R(t) _ 2P(t) — 2[dP(t)/dt](t + t.) + [d*P(r)/dt*)(t + t.)? <07 @
da? (t+t) )
Rearrangement of (d) and introduction of (b) into (d), or the pair (P, 1°"!), gives
P(1) (t+1) < 0

dt?
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From Figure E4.12b we note in the range 0 < << 1°* that dP(t)/dt is always positive
and decreasing so that d?P(r)/df* is always negative (see Figure E4.12c). Conse-
quently, the sufficiency condition is met.
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PROBLEMS
4.1 Classify the following functions as continuous (specify the range) or discrete:
(a) f(x) = €
(b) f(x) = ax,_; + b(xy — x,) where x, represents a stage in a distillation column
(c) f(x) = T where x;, = concentration of vapor from a still and x, is the
X

s concentration in the still



4.2

4.3

4.4

4.5

4.6
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The future worth S of a series of n uniform payments each of amount P is

P

l

S =21 + iy — 1]

where i is the interest rate per period. If i is considered to be the only variable, is it dis-
crete or continuous? Explain. Repeat for n. Repeat for both n and i being variables.

In a plant the gross profit P in dollars is
P=nS — (nV+F)

where n = the number of units produced per year
S = the sales price in dollars per unit
V = the variable cost of production in dollars per unit
F = the fixed charge in dollars

Suppose that the average unit cost is calculated as

nV+ F

Average unit cost =
Discuss under what circumstances n can be treated as a continuous variable.
One rate of return is the ratio of net profit P to total investment

o P1-1) _[S= v+ F/m)
R =100 =——==100(1 = 7) 7n

where t = the fraction tax rate

I = the total investment in dollars
Find the maximum R as a function of n for a given I if n is a continuous variable.
Repeat if n is discrete. (See Problem 4.3 for other notation.)

Rewrite the following linear programming problems in matrix notation.

(a) Minimize: f(x) = 3x; + 2x; + x3
Subject to: gi(x) = 2x; + 3x, + x3 =10
g(x) = x;+2x, + x3=15
(b) Maximize: f(x) = 5x; + 10x, + 12x3
~ Subject to: gi(x) = 15x; + 10x, + 10x; = 200

g(x) = x =0

g(x) = =0

g(x) = x3=0

hy(x) = 10x; + 25x, + 20x; = 300
Put the following nonlinear objective function into matrix notation by defining suitable
matrices; X = [x; x,]".

f(x) =3+ 2x; + 3x, + 2x7 + 2x.x, + 6x3
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4.7 Sketch the objective function and constraints of the following nonlinear programming
problems.

(a) Minimize: f(x) = 2x} — 2xx, + 2x5 — 6x, + 6
Subjectto:  gi(x) = x; +tx, =2
(b) Minimize:  f(x) = x} — 3xx, + 4
Subjectto:  gy(x) = 5x; + 2x, = 18
h(x) = =2, +x3=35

(c) Minimize: f(x) = —5x} + x3
“ 1
Subjectto:  gi(x) = —; -—=-1
X3 Xy

gx) = x,=0
g(x) = x=0

4.8 Distinguish between the local and global extrema of the following objective function.

f(x) = 2x3 + x5 + x3 + 4xpx, + 3

4.9 Are the following vectors (a) feasible or nonfeasible vectors with regard to Problem
4.5b; (b) interior or exterior vectors?

(1) x=[5 2 10]7
2)x=[10 2 75]°
3)x=[0 0 Of

4.10 Shade the feasible region of the nonlinear programming problems of Problem 4.7. Is
x = [1 1]7 an interior, boundary, or exterior point in these problgms?

4.11 What is the feasible region for x given the following constraints? Sketch the feasible
region for the two-dimensional problems.
(a) m(x) = x+tx,—-3=0
hy(x) = 26, —x, +1=0
(b) hy(x) = x}+x5+x3=0
hx) = x;+x,+x=0
€) &ax) =x—-x3-2=0
gx) = x; —x,+4=0
(d) m(x) = X3+ x5+ 3
g(x) = x;, —x,+2=0
&(x) = x,=0
g(x) = %= 0
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4.12 Two solutions to the nonlinear programming problem
Minimize:  f(x) = 7x; — 6x, + 4x;,
Subjectto:  hy(x) =x3+ 23 +3x5 - 1=0
hy(x) =5x; + 5x, = 3x3 —6=0

have been reported, apparently a maximum and a minimum.

0.947 0.534
X = 0.207 X = 0.535
—0.0772 —0.219

f(x) = 5.08 f(x) = —0.346

Verify that each of these x vectors is feasible.
4.13 The problem
Minimize: f(x) = 100(x, — x1)* + (1 — x;)?
Subjectto: x? +x3=2
is reported to have a local minimum at the point x* = [1 1]7. Is this local optimum also

a global optimum?

4.14 Under what circumstances is a local minimum guaranteed to be the global minimum?
(Be brief.)

4.15 Are the following functions convex? Strictly convex? Why?
(@) 2x3 + 2xyx, + 3x3 + Tx; + 8x, + 25
What are the optimum values of x; and x,?
(b) eSx

4.16 Determine the convexity or concavity of the following objective functions:
(a) f(xix2) = (x1 —x2)* + x3
(b) fx1, %2 x3) = x} + x5 + x3

(€) flxy, xp) = €™ + e®

4.17 Show that f = e* + e*is convex. Is it also strictly convex?

4.18 Show that f = Ix| is convex.

4.19 Is the following region constructed by the four constraints convex? Closed?
x = 1-x

1 + 0.5x,

2

0

IA

X3

s
A

v
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4.20 Does the following set of constraints form a convex region?
gix) = —(xi+x3) +9=0

gx)=—x—x+1=0

4.21 Consider the following problem:
Minimize: f(x) = x}+x,
Subjectto:  gi(x) = x}I+x3—-9=0
gx) = (x+x3)—1=0
g(x) = (x+x)—1=0

- Does the constraint set form a convex region? Is it closed? (Hint: A plot will help you
decide.) : :

4.22 Is the following function convex, concave, neither, or both? Show your calculations.

f(x)=Inx, +1Inx,

4.23 Sketch the region defined by the following inequality constraints. Is it a convex region?
Is it closed?

x1+x2—120
x;—x,+1=0
2—x1 2'0

Xy =0

4.24 Does the following constraint set form a convex region (set)?
Ch(x) = x24+x2-9=0
gi(x) = —(x + x%) +1=0

gz(X) = —(xl + x2) +1=0

4.25 Separable functions are those that can be expressed in the form
Y(x) = Zl i(x)

For example, x? + x2 + x3 is a separable function because
— 2
¥(x) = Exi

Show that if the terms in a separable function are convex, the separable function is
convex.
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4.26 Is the following problem a convex programming problem?

200
Minimize: f(x) = 100x, + —
X1Xy -
300
Subjectto: 2x, + — =1
X1X2
X1, X2 =0

4.27 Classify each of the following matrices as (a) positive-definite, (b) negative-definite,

(¢) neither. ’
1 0] 0.1 0
(@) 14 (c) [ 3 1}

® ;] @ |27

4.28 Determine whether the following matrix is positive-definite, positive-semidefinite,
negative-definite, negative-semidefinite, or none of the above. Show all calculations.

1
A =11
1

[ G WO
O =

4.29 In designing a can to hold a specified amount of soda water, the cost function (to be
minimized) for manufacturing one can is '

fiD,h) = wDh + %DZ

.

and the constraints are

%D% > 400

35 =<=D=<8§ 8=h=18

Based on the preceding problem, answer the following; as far as possible for each

answer use mathematics to support your statements:

(a) State whether f(D, h) is unimodal (one extremum) or multimodal (more then one
extremum).

(b) State whether f(D, k) is continuous or not.

(c) State whether f(D, h) is convex, concave, or neither.

(d) State whether or not f(D, h) alone meets the necessary and sufficient conditions
for a minimum to exist.

(e) State whether the constraints form a convex region.

4.30 A reactor converts an organic compound to product P by heating the material in the
presence of an additive A (mole fraction = x,). The additive can be injected into the
reactor, while steam can be injected into a heating coil inside the reactor to provide heat.
Some conversion can be obtained by heating without addition of A, and vice versa.
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The product P can be sold for $50/1b mol. For 1 Ib mol of feed, the cost of the addi-
tive (in dollars/Ib mol) as a function of x, is given by the formula, 2.0 + 10x, + 20x,2.
The cost of the steam (in dollars) as a function of S is 1.0 + 0.003S + 2.0 X 1076 §2,
(S = Ib steam/lb mol feed). The yield equation is y, = 0.1 + 0.3x, + 0.001S + 0.0001x,
S; Yo = Ib mol product P/Ib mol feed.

(a) Formulate the profit function (basis of 1.0 Ib mol feed) in terms of x, and S.

f= Income — Costs
The constraints are:
0=x,=1 S=0

(b) Isfaconcave function? Demonstrate mathematically why it is or why it is not concave.
(c) Is the region of search convex? Why?

4.31 The objective function for the work requirement for a three-stage compressor can be
expressed as (p is pressure)

0.286 0.286 0.286
()7 ) )
P 1 2)) D3

p; =.1 atm and p, = 10 atm. The minimum occurs at a pressure ratio for each stage
175 4
of V/10. Isfconvex for 1 = p, = 10,1 = p; = 10?

4.32 In the following problem
(a) Is the objective function convex? (b).Is the constraint region convex?
200

Minimize: f(x) = 100x, + —
X1X2

300
g(X) = ZX:2 + = 1
Subject to: , X+ X
X1 = O

X220

4.33 Answer the questions below for the following problem; in each case justify your answer.
Minimize: f(x) =4x{ —3x7 — x, |
Subjectto: x}+ x2=4
X —x=2

(a) Is the problem a convex programming problem?
(b) Is the point x = [1 1]T a feasible point?
(c) Is the point x = [2 2]T an interior point?

4.34 Happel and Jordan (1975) reported an objective function (cost) for the design of a dis-
tillation column as follows:

f = 14720(100 — P) + 6560R — 30.2PR + 6560 — 30.2P
+ 19.51 (5000R — 23PR + 5000 — 23P)%S

+ 23.2 [SQOOR — 23PR + 5000 — 23P]%%
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where n = number of theoretical stages
R = reflux ratio
P = percent recovery in bottoms stream

They reported the optimum occurs at R = 8, n = 55, and P = 99. Is f convex at this
point? Are there nearby regions where f is not convex?

4.35 Given a linear objective function,

f=x1 +x2

(x, and x, must lie in region A)

FIGURE P4.35

explain why a nonconvex region such as region A in Figure P4.35 causes difficulties
in the search for the maximum of fin the region. Why is region A not convex?

4.36 Consider the following objective function

= $ -

Show that fis convex. Hint: Expand f for both n odd and n even. You can plot the func-
tion to assist in your analysis. Under what circumstances is

n

flx) = Ecilx — a

i=1

convex?

4.37 Classify the stationary points of
(@) f=—x*+x*+20
b)f=x*+3x*+x+5
) f=x*—-2x*+1
(d) f= x? — 8x,x, + x3

according to Table 4.2
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4.38 List stationary points and their classification (maximum, minimum, saddle point) of '
(@) f=x}+ 2x; + 3x3 + 6x, + 4
(b) f=x; + x, + x7 — dxyx; + 2x3
4.39 State what type of surface is represented by
f(x) = 2xix, — 23 + xj
at the stationary point x = [0 0]” (use Table 4.2).

4.40 Interpret the geometry of the following function at its stationary point in terms of
Table 4.2

flx) = 3x3x;

4.41 Classify the following function in terms of the list in Table 4.2:
f(x) = 10x; — x3 + 10x, — x3 — x;x, + x3 — 34

4.42 In crystal NaCl, each Na* or Cl~ ion is surrounded by 6 nearest neighbors of opposite
charge and 12 nearest neighbors of the same charge. Two sets of forces oppose each
other: the coulombic attraction and the hard-core repulsion. The potential energy u(r)
of the crystal is given by the Lennard—Jones potential expression,

=4[ (5)"- (3)]

where €,0 are constants, such that € > 0, o > 0.

(a) Does the Lennard—Jones potential u(r) have a stationary point(s)? If it does, locate
it (them). , :

(b) Identify the nature of the stationary point(s) min, max, etc.

(c) What is the magnitude of the potential energy at the stationary points?

4.43 Consider the function

y=(x—a)

Note that x = a minimizes y. Let z = x> — 4x + 16. Does the solution to x> — 4x +
16 =0,

X

=i£%;ﬁ=2iﬂv§

minimize z? (j = V —1).
4.44 The following objective function can be seen by inspection to have a minimum at x = 0:

fx) =¥
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Can the criteria of Section 4.5 be applied to test this outcome?

4.45 (a) Consider the objective function,
f=6x}+ x3 + 6x,x, + 3x3

Find the stationary points and classify them using the Hessian matrix.
(b) Repeat for '

f=3x2+ 6x; + x2 + 6xx, + x5 + 2x5 + x5 + x,
(c) Repeat for

f=aw; + ax, + ay? + ax3 + axx,

4.46 An objective function is
£) = (61 = 8 + (x, = 5 + 16

By inspection, you can find x* = [8 5]T yields the minimum of f{x). Show that x*
meets the necessary and sufficient conditions for a minimum.

4.47 Analyze the function
£ = bx* = b

Find all of its stationary points and determine if they are maxima, minima, or inflec-
tion (saddle) points. Sketch the curve in the region of

—2=x=<2

4.48 Determine if the following objective function
f(x) = 2x3 + x5 + xix} + 4xx, +3

has local minima or maxima. Classify each point clearly.

4.49 Is the following function unimodal (only one extremum) or multimodal (more than one

extremum)?
—x? —0=X=
f(x) =4 —x 0=x=1
& ! l=x=x

4.50 Determine whether the solution x = [—0.87 —0.8]T for the objective function
| F(x) = x4 + 1223 — 1522 — 56x, + 60

is indeed a maximum.
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A GOOD TECHNIQUE for the optimization of a function of just one variable is essen-
tial for two reasons:

1. Some unconstrained problems inherently involve only one variable

2. Techniques for unconstrained and constrained optimization problems generally
involve repeated use of a one-dimensional search as described in Chapters 6
and 8.

Prior to the advent of high-speed computers, methods of optimization were
limited primarily to analytical methods, that is, methods of calculating a potential
extremum were based on using the necessary conditions and analytical derivatives
as well as values of the objective function. Modern computers have made possible
iterative, or numerical, methods that search for an extremum by using function and
sometimes derivative values of f{x) at a sequence of trial points x!, X%, . . . .

As an example consider the following function of a single variable x (see Fig-
ure 5.1).

fix) =x*—2x+ 1

Start
4 .
f)=x2-2x+1
3 |
f@ 5L Iterative method:
second estimate

of x*
Analytical
method:

Iterative method:
first estimate of x*

‘ | ]
0 1 2 3 4

FIGURE 5.1
Iterative versus analytical methods of finding a minimum.
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An analytical method of finding x* at the minimum of f(x) is to set the gradient of fi (x)
equal to zero

df(x)
dx

=0=2x—2

and solve the resulting equation to get x* = 1; x* can be tested for the sufficient
conditions to ascertain that it is indeed a minimum:

d’f(1)
dx?

=22>0

To carry out an iterative method of numerical minimization, start with some ini-
tial value of x, say x° = 0, and calculate successive values of f(x) = x> — 2x + 1 and
possibly df/dx for other values of x, values selected according to whatever strategy
is to be employed. A number of different strategies are discussed in subsequent sec-
tions of this chapter. Stop when f(x**1) — f(x*) < ¢, or when

d
a <e,
dx |

where the superscript k designates the iteration number and &, and &, are the pre-
specified tolerances or criteria of precision.

- If f(x) has a simple closed-form expression, analytical methods yield an exact
solution, a closed form expression for the optimal x, x*. If f(x) is more complex, for
example, if it requires several steps to compute, then a numerical approach must be
used. Software for nonlinear optimization is now so widely available that the numer-
ical approach is almost always used. For example, the “Solver” in the Microsoft
Excel spreadsheet solves linear and nonlinear optithization problems, and many
FORTRAN and C optimizers are available as well General optimization software is
discussed in Section 8.9.

Analytical methods are usually difficult to apply for nonlinear objective func-
tions with more than one variable. For example, suppose that the nonlinear function

fix) = f(x;, X,, . . . , X,,) is to be minimized. The necessary conditions to be used are
of(x
fx) _
axl
aflx
fx) _
8x2
fx) _

ox,,
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Each of the partial derivatives when equated to zero may well yield a nonlinear
equation. Hence, the minimization of f(x) is converted into a problem of solving a
set of nonlinear equations in » variables, a problem that can be just as difficult to
solve as the original problem. Thus, most engineers prefer to attack the minimiza-
tion problem directly by one of the numerical methods described in Chapter 6,
rather than to use an indirect method. Even when minimizing a function of one vari-
able by an indirect method, using the necessary conditions can lead to having to
find the real roots of a nonlinear equation.

5.1 NUMERICAL METHODS FOR OPTIMIZING A FUNCTION
OF ONE VARIABLE

Most algorithms for unconstrained and constrained optimization make use of an
efficient unidimensional optimization technique to locate a local minimum of a
function of one variable. Nash and Soter (1996) and other general optimization
books (e.g., Dennis and Schnabel, 1983) have reviewed one-dimensional search
techniques that calculate the interval in which the minimum of a function lies. To
apply these methods you initially need to know an initial bracket A° that contains
the minimum of the objective function f{x), and that f{x) is unimodal in the interval.
This can be done by coding the function in a spreadsheet or in a programming lan-
guage like Visual Basic, Fortran, or C, choosing an interval, and evaluating f{x) at
a grid of points in that interval. The interval is extended if the minimum is at an end
point. There are various methods of varying the initial interval to reach a final inter-
val A". In the next section we describe a few of the methods that prove to be the
most effective in practice.
, One method of optimization for a function of a single variable is to set up as
fine a grid as you wish for the values of x and calculate the function value for every
point on the grid. An approximation to the optimum is the best value of f(x).
Although this is not a very efficient method for finding the optimum, it can yield
acceptable results. On the other hand, if we were to utilize this approach in opti-
mizing a multivariable function of more than, say, five variables, the computer time
is quite likely to become prohibitive, and the accuracy is usually not satisfactory.
In selecting a search method to minimize or maximize a function of a single
variable, the most important concerns are software availability, ease of use, and
efficiency. Sometimes the function may take a long time to compute, and then effi-
ciency becomes more important. For example, in some problems a simulation may
be required to generate the function values, such as in determining the optimal
number of trays in a distillation column. In other cases you have no functional
description of the physical-chemical model of the process to be optimized and are
forced to operate the process at various input levels to evaluate the value of the
process output. The generation of a new value of the objective function in such cir-
cumstances may be extremely costly, and no doubt the number of plant tests would
be limited and have to be quite judiciously designed. In such circumstances, effi-
ciency is a key criterion in selecting a minimization strategy.
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5.2 SCANNING AND BRACKETING PROCEDURES

Some unidimensional search procedures require that a bracket of the minimum
be obtained as the first part of the strategy, and then the bracket is narrowed.
Along with the statement of the objective function f(x) there must be some
statement of bounds on x or else the implicit assumption that x is unbounded
(— 00 < x < 00). For example, the problem

Minimize: f(x) = (x — 100)?

has an optimal value of x* = 100. Clearly you would not want to start at —oo (i.e.,
a large negative number) and try to bracket the minimum. Common sense suggests
estimating the minimum x and setting up a sufficiently wide bracket to contain the
true minimum. Clearly, if you make a mistake and set up a bracket of 0 = x = 10,
you will find that the minimum occurs at one of the bounds, hence the bracket must
be revised. In engineering and scientific work physical limits on temperature, pres-
sure, concentration, and other physically meaningful variables place practical
bounds on the region of search that might be used as an initial bracket.

Several strategies exist for scanning the independent variable space and deter-
mining an acceptable range for search for the minimum of f(x). As an example, in
the above function, if we discretize the independent variable by a grid spacing of
0.01, and then initiate the search at zero, proceeding with consecutively higher val-
ues of x, much time and effort would be consumed in order to set up the initial
bracket for x. Therefore, acceleration procedures are used to scan rapidly for a suit-
able range of x. One technique might involve using a functional transformation
(e.g., log x) in order to look at wide ranges of the independent variable. Another
method might be to use a variable grid spacing. Con51der a sequence in x given by
the following formula:

= xk 4+ §.2FL 31

Equation (5.1) allows for successively wider-spaced values, given some base incre-
ment (delta). Table 5.1 lists the values of x and f(x) = (x — 100)* for Equation
(5.1) with & = 1.Note that in nine calculations we have bounded the minimum of
Jf(x). Another scanning procedure could be initiated between x = 63 and x = 255,
with 6 reduced, and so on to find the minimum of f(x). However, more efficient
techniques are discussed in subsequent sections of this chapter.

In optimization of a function of a single variable, we recognize (as for general
multivariable problems) that there is no substitute for a good first guess for the
- starting point in the search. Insight into the problem as well as previous experience

TABLE 5.1
Acceleration in fixing an initial bracket
x 0 1 3 7 15 31 63 127 255

fx) 104 9801 9409 8649 7225 4761 1369 729 2325
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are therefore often very important factors influencing the amount of time and effort
required to solve a given optimization problem.

The methods considered in the rest of this chapter are generally termed descent
methods for minimization because a given step is pursued only if it yields an
improved value for the objective function. First we cover methods that use function
values or first or second derivatives in Section 5.3, followed by a review of several
methods that use only function values in Section 5.4.

5.3 NEWTON AND QUASI-NEWTON METHODS
OF UNIDIMENSIONAL SEARCH

Three basic procedures for finding an extremum of a function of one variable have
evolved from applying the necessary optimality conditions to the function:

1. Newton’s method
2. Finite difference approximation of Newton’s method
3. Quasi-Newton methods

In comparing the effectiveness of these techniques, it is useful to examine the rate
of convergence for each method. Rates of convergence can be expressed in various
ways, but a common classification is as follows:?

Linear
|1 — x*|
W = 0 = ¢ <1, klarge (5.2)
(rate usually slow in practice)
Order p |

k+1 . %
T — x|

[x* — x*|”

c = 0,p = 1, klarge (5.3

(rate fastest in practice if p > 1)

If p = 2, the order of convergence is said to be quadratic.

To understand these definitions, assume that the algorithm generating the
sequence of points x* is converging to x*, that is, as kK — oo, if Equation (5.2) holds
for large k, x* — x*.Then

[x*" = x*| = c|x* —x*¥|  klarge

The symbols x¥, x**1, and so on refer to the kth or (k + 1)st stage of iteration and not to powers of x.
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so the error at iteration k + 1 is bounded by c times the error at iteration k, where
¢ < 1.If ¢ = 0.1, then the error is reduced by a factor of 10 at each iteration, at
least for the later iterations. The constant c is called the convergence ratio.

If Equation (5.3) holds for large k, then [x**! — x*|| =< ¢ |x* — x||?, k large
enough. If p = 2, and ||x* — x°| = 10~ for some «, then

e — x*| < ¢+ 1072
<2 — x| = 2+ 10~
“xk+3 - X*” < C3 R 10—6

and so on. :

Hence, if ¢ is around 1.0, the error decreases very rapidly, the number of cor-
rect digits in x* doubling with each iteration. Because all real numbers in double
precision arithmetic have about 16 significant decimal digits, only a few iterations
are needed before the limits of accuracy of Equation (5.3) are reached.

Superlinear

X! — x*|

N et |
[ = X

—0 (or < ¢iand ¢, —>0ask— o0) (5.4)

(rate usually fast in practice)

For a function of a single variable |x| = |x| itself.

5.3.1 Newton’s Method

Recall that the first-order necessary condition for a local minimum is f 'x) = 0.
Consequently, you can solve the equation f'(x) = 0 by Newton’s method to get

N f ()
= xk - fn(xk)

making sure on each stage k that f(x**!) < f(x*) for a minimum. Examine Figure 5.2.
To see what Newton’s method implies about f(x), suppose f(x) is approximated
' by a quadratic function at x*

fx) = f(x*) + (&) (x — x*) + %f”(xk)(x — xk)? (5.6)

Find df(x)/dx = 0, a stationary point of the quadratic model of the function. The
result obtained by differentiating Equation (5.6) with respect to x is

G + QR -2 =0 (5.7)

(5.5)

X
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Tangent of f* (x)
at xk

()

f'(x)

FilGURE 5.2
Newton’s method applied to the solution of f'(x) = 0.

which can be rearranged to yield Equation (5.5). Consequently, Newton’s method
is equivalent to using a quadratic model for a function in minimization (or maxi-
mization) and applying the necessary conditions.

The advantages of Newton’s method are

1. The procedure is locally quadratically convergent [p = 2 in Equation (5.3)] to the
extremum as long as f”(x) # 0.
2. For a quadratic function, the minimum is obtained in one iteration.

‘The disadvantages of the method are

1. You have to calculate both f'(x) and f"(x).

2. If f"(x) - 0, the method converges slowly.

3. If the initial point is not close enough to the minimum, the method as described
earlier will not converge. Modified versions that guarantee convergence from
poor starting points are described in Bazarra et al. (1993) and Nash and Sofer
(1996).

5.3.2 Finite Difference Approximations to Derivatives

If f(x) is not given by a formula, or the formula is so complicated that analytical

derivatives cannot be formulated, you can replace Equation (5.5) with a finite dif-

ference approximation

i U W)~ fle — m))/2n 58
[f(x + k) — 2f(x) + f(x — h)]/R?

X
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S(x)

f '(x)f

FIGURE 5.3
Quasi-Newton method for solution of f'(x) = 0.

Central differences were used in Equation (5.8), but forward differences or any
other difference scheme would suffice as long as the step size 4 is selected to match
the difference formula and the computer (machine) precision with which the cal-
culations are to be executed. The main disadvantage is the error introduced by the
finite differencing.

5.3.3 Quasi-Newton Method

In the quasi-Newton method (secant method) the approximate model analogous to
Equation (5.7) to be solved is

f'(x*) + m(x — x%) =’0 (5.9)

where m is the slope of the line connecting the point x” and a second point x7,
given by

G - )

The quasi-Newton approximates f'(x) as a straight line (examine Figure 5.3); as
~ x%7—xP, m approaches the second derivative of f(x). Thus Equation (5.9) imitates
Newton’s method
~ f'(x)
x=x1 — — ; (5.10)
LF'(x%) = F(P)]/ (5 — xF)

where X is the approximation to x* achieved on one iteration k. Note that f’(x) can
itself be approximated by finite differencing.
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Quasi-Newton methods start out by using two points ¥’ and x? spanning the
interval of x, points at which the first derivatives of f{x) are of opposite sign. The zero
of Equation (5.9) is predicted by Equation (5.10), and the derivative of the function
is then evaluated at the new point. The two points retained for the next step are x
and either x7 or x*. This choice is made so that the pair of derivatives f'(x), and
either f'(x?) or f'(x?), have opposite signs to maintain the bracket on x*. This varia-
tion is called “regula falsi” or the method of false position. In Figure 5.3, for the (k
+ 1)st search, x and x4 would be selected as the end points of the secant line.

Quasi-Newton methods may seem crude, but they work well in practice. The
order of convergence is (1 + \/g) /2 =~ 1.6 for a single variable. Their conver-
gence is slightly slower than a properly chosen finite difference Newton method,
but they are usually more efficient in terms of total function evaluations to achieve
a specified accuracy (see Dennis and Schnabel, 1983, Chapter 2).

For any of the three procedures outlined in this section, in minimization you
assume the function is unimodal, bracket the minimum, pick a starting point, apply
the iteration formula to get x**! (or x ) from x* (or x* and x9), and make sure that
F(@**t1) < f(x*) on each iteration so that progress is made toward the minimum. As
long as f"(x*) or its approximation is positive, f(x) decreases.

Of course, you must start in the correct direction to reduce f(x) (for a mini-
mum) by testing an initial perturbation in x. For maximization, minimize —f(x).

EXAMPLE 5.1 COMPARISON OF NEWTON, FINITE
DIFFERENCE NEWTON, AND QUASI-NEWTON METHODS
APPLIED TO A QUADRATIC FUNCTION

In this example, we minimize a simple quadratic function f(x) = x? — x that is
illustrated in Figure E5.1a using one iteration of each of the methods presented in
Section 5.3.

Solution. By inspection we can pick a bracket on the minimum, say x = —3 to x =
3. Assume x° = 3 is the starting point for the minimization.

Newton’s method. For Newton’s method sequentially apply Equation (5.5).
Examine Figure 5.1b for f(x) = x> — x and f'(x) = 2x — 1; f"(x) = 2. Note f"(x) is
always positive-definite. For this example Equation (5.5) is

f'(x%
1 _ 0 _
TR0

(@)

and
x''=3-3=05

Because the function is quadratic and hence f'(x) is linear, the minimum is
obtained in one step. If the function were not quadratic, then additional iterations
using Equation (5.5) would take place. -
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fx)

6

FiIGURE ES5S.1a

FIGURE Es5.1b

Finite difference Newton method. Application of Equation (5.8) to f(x) = x2 — x
is illustrated here. However, we use a forward difference formula for f’(x) and a three-
point central difference formula for f"(x)

et UG =@ ®
| [+ 1) = 27(x) + fx = W))W
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with A = 1073

[£(3.001) — £(3.0)]/1073
[£(3.001) — 2f(3.0) + £(2.999)]/(1073)2

(6.005001 ~ 6.000000)

xl=3-

=3 - (107
( )(6.005001 ~ 12.000000 + 5.995001)
0.005001
=3-(107%)———"=3-2
3= (107) 5000000 = 3~ 2300500

= 0.499500

One more iteration could be taken to improve the estimate of x*, perhaps with a
smaller value of & (if desired). '

Quasi-Newton method. The application of Equation (5.10) to f(x) = x? — x starts
with the two points x = —3 and x = 3 corresponding to the x? and x4, respectively, in
Figure 5.3:

f(=3)=-1 f@)=5
5

R Ty e T

As before, the optimum is reached in one step because f'(x) is linear, and the linear
extrapolation is valid.

EXAMPLE 5.2 MINIMIZING A MORE DIFFICULT FUNCTION

In this example we minimize a nonquadratic function f(x) = x* — x + 1 that is illus-
trated in Figure ES.2a, using the same three methods as in Example 5.1. For a starting
point of x = 3, minimize f(x) until the change in x is less than 10~7. Use & = 0.1 for
the finite-difference method. For the quasi-Newton method, use x¢ = 3 and x? = —3.

Solution

Newton’s method. For Newton’s method, f' = 4x*> — 1 and f” = 12x?, and the
sequence of steps is

_ 4x(3, -1 @
X, = X 122 a
107
=3 —-——=2.00
3 108 9259
31.44
x, = 2.00926 — 65 = 1.36015

48.4454
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80 fx)=x*-x+1 x0
70
60 -
50+
40+
30+
20+
xl
10
9 2
! | » * |
-3 -2 -1 2 3
FIGURE ES5.2a
Newton iterates for fourth order function.
Additional iterations yield the following values for x:
k+1 _ % k+1 _ %
k x* X X X P
xk - x* ka -— x*lz
0 3.00000
1 2.009259 0.582 0.246
2 1.3601480 0.529 0.384
3 0.9518103 0.441 0.604
4 0.7265254 0.300 0.932
5 0.6422266 0.127 1.315
6 0.6301933 0.019 1.547
7 0.6299606 0.000 1.587
8 0.6299605
9 0.6299605

As you can see from the third and fourth columns in the table the rate of convergence
of Newton’s method is superlinear (and in fact quadratic) for this function.
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Finite Difference Newton. Equation (5.8) for this example is

I I LB ) »
2 [flx + ) — 2f(0) + flx = B)]

For the same problem as used in Newton’s method, the first iteration using (b) for

h=10"%is
- [ 10—4] [£(3.0001) — £(2.9999)]
x =3-
2 ][ A(3.0001) — 2£(3.000) + £(2.999)]
Other values of h give
x*
k h=0.10 h=10"% h =107
0 3.00000 2.00926 3.00000
1 2.00833 1.36015 2.21568
2 1.35816 0.951811 1.46785
3 0.948531 0.726526 0.955459
4 0.721882 0.642227 0.736528
5 0.636823 0.630193 0.642986
6 0.624849 0.629960 0.631846
7 0.624668 0.6299605191 0.630035
8 0.624669 .......... 0.629964
9 0.624669313  .......... 0.629961
10 ...l Ll 0.629961
1 0.629960525

For h = 1078, the procedure diverged after the second iteration.

Quasi-Newton. The application of Equation (5.10) yields the following results
(examine Figure E5.2b). Note how the shape of f'(x) implies that a large number of
iterations are needed to reach x*. Some of the values of f'(x) and x during the search
are shown in the following table; notice that x4 remains unchanged in order to main-
tain the bracket with f'(x) > 0.

k X X f'()

0 30 -30 —109.0000

1 30 0.0277 -0.9991

2 30 0.0552 -0.9992

3 30 0.0825 —0.9977

4 30 0.1094 —0.9899

5 30 0.1361 —0.9899

20 30 0.4593 —0.6124

50 3.0 0.6223 —0.0360
100 3.0 0.6299 -1.399 X 10~

132 3.0 0.6299 —3.952 X 1076
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f'®)
100 |-

1st secant trial

40 -

/ = 4x3 —
20} x*=0.6229—\ fl)=4x3-1

FIGURE ES5.2b
Quazi-Newton method applied to f'(x).

5.4 POLYNOMIAL APPROXIMATION METHODS

Another class of methods of unidimensional minimization locates a point x near x*,
the value of the independent variable corresponding to the minimum of f(x), by
extrapolation and interpolation using polynomial approximations as models of f(x).
Both quadratic and cubic approximation have been proposed using function values
only and using both function and derivative values. In functions where f'(x) is con-
. tinuous, these methods are much more efficient than other methods and are now
widely used to do line searches within multivariable optimizers.

5.4.1 Quadratic Interpolation
We start with three points x;, x,, and x; in increasing order that might be equally

spaced, but the extreme points must bracket the minimum. From the analysis in
Chapter 2, we know that a quadratic function f(x) = a + bx + cx? can be passed
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exactly through the three points, and that the function can be differentiated and the
derivative set equal to O to yield the minimum of the approximating function

~ b
= —— 5.11
x > (5.11)
Suppose that f(x) is evaluated at x,, x,, and x; to yield f(x;) = f;, f(x,) = f,, and
f(x3) = f5. The coefficients b and ¢ can be evaluated from the solution of the three
linear equations

flx;) = a + bx; + cxi
fx;) =a + bx, + cx3
flx3) =a + bx; + cx3

via determinants or matrix algebra. Introduction of » and ¢ expressed in terms of
X1, Xy, X3, 1> f3, and f; into Equation (5.11) gives

~q _ 1 (3 —x)fi + (3 — 2D + (1 — x3)fs
2L (g — x3)fi + (x5 — x1)fr + (X1 — X%)f5

To illustrate the first stage in the search procedure, examine the four points in
Figure 5.4 for stage 1. We want to reduce the initial interval [x,, x;]. By examining
the values of f(x) [with the assumptions that f(x) is unimodal and has a minimum],
we can discard the interval from x, to x, and use the region (x,, x;) as the new inter-
val. The new interval contains three points, (x,, X, x;) that can be introduced into
Equation (5.12) to estimate a x*, and so on. In general, you evaluate f(x*) and discard
from the set {x,, x,, x;} the point that corresponds to the greatest value of f{x), unless

(5.12)

f(x)

Stage 2

FIGURE 5.4
Two stages of quadratic interpolation.
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: L If X lies between x, and x,:
I , Ib 2 3
) ¢ ) . L
(a) f* < fy Pick x,, X, x3
’ v S R
i T I : T | } (b) f* > f, Pick x; x,, X
) |
T R ([ I [*</fs
| | | 1 | | | ]
X, X, X X, Xy X3 X X3
X X
IL. If X lies between x, and x,:
II I 1 2
£ a £ b e
(@) f* < f, Pick x,, X, x,
f* </
) ! * ’ : o
{ T I | 9 | () f*>1 Pick X, x,, x;
| [ o | *
Y PR AR
] 1 | | I [ |
xy, X X, X x, X X; X3
X X
FIGURE 5.5

How to maintain a bracket on the minimum in quadratic interpolation.

a bracket on the minimum of fx) is lost by so doing, in which case you discard the x
so as to maintain the bracket. The specific tests and choices of x; to maintain the
bracket are illustrated in Figure 5.5. In Figure 5.5, f* = f(x). If x* and whichever
of {x;, x,, x3} corresponding to the smallest f(x) differ by less than the prescribed
accuracy in x, or the prescribed accuracy in the corresponding values of f(x) is
achieved, terminate the search. Note that only function evaluations are used in the
search and that only one new function evaluation (for x ) has to be carried out at each
new iteration.

EXAMPLE 53 APPLICATION OF QUADRATIC
INTERPOLATION

The function to be minimized is f(x) = x?> — x and is illustrated in Figure E5.1a. Three
points bracketing the minimum (—1.7, —0.1, 1.5) are used to start the search for the
minimum of f(x); we use equally spaced points here but that is not a requirement of
the method.

Solution
x =—17 x, = —0.1 x3 =15
flx)) =459  f(x;) =0.11 flx3) = 0.75
Ax =16
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Two different formulas for quadratic interpolation can be compared: Equation (5.8),
the finite difference method, and Equation (5.12).

b - Adlfe) = fw)] 58

2[f(x3) — 2f(xx) + flx1)]

o L6075 — 459)
T T 2075 - 2(011) + 459) @

e = l[x% - x3]1f(x) + [x] — x1)f(x) + [x] — x3]f(xs) (5.12)
2 (xz - x3)f(x1) + (xs - xl)f(xZ) + (xl - xz)f(xa) '
[(—0.1)* — (1.5)%](4.59) + [(1.5)* — (—1.7)%](0.11)
1 + [(=1.7)% = (—0.1)2])(0.75) )
T2 [(=0.1) — (1.5)](4.59) + [(1.5) — (=1.7)](0.11) ®)

+ [(=1.7) = (=0.1)](0.75)
= 0.50

Note that a solution on the first iteration seems to be remarkable, but keep in mind
that the function is quadratic so that quadratic interpolation should be good even if
approximate formulas are used for derivatives.

5.4.2 Cubic Interpolation

Cubic interpolation to find the minimum of f(x) is based on approximating the
“objective function by a third-degree polynomial within the interval of interest and
then determining the associated stationary point of the polynomial

f(x) = ax® + ax* + ax + a,

Four points must be computed (that bracket the minimum) to estimate the minimum,
either four values of f{x), or the values of f{x) and the derivative of fx), each at two
points. -

~ In the former case four linear equations are obtained with the four unknowns
being the desired coefficients. Let the matrix X be

x oxox 1
IR
X = x3 x2 ox; 1
3 X3 X3
x3 x3 ox, 1
F' = [f(x;) flx) flx3) f(x4)]
AT = [a; a, a; a,]

F = XA - (5.13)



170 PART II: Optimization Theory and Methods

Then the extremum of f(x) is obtained by setting the derivative of f(x) equal to zero
and solving for x

df(x)
dx=3a1x2+2a2x+a3=0
sb that
- —2a, + V4a2 — 12a
y = 2% % 193 (5.14)

6a,

The sign to use before the square root is governed by the sign of the second deriv-
ative of f(x), that is, whether a minimum or maximum is sought. The vector A can
be computed from XA = F or

A = X'F (5.15)

After the optimum point x is predicted, it is used as a new point in the next
iteration and the point with the highest [lowest value of f(x) for maximization]
value of f(x) is discarded.

If the first derivatives of f(x) are available, only two points are needed, and the
cubic function can be fitted to the two pairs of the slope and function values. These
four pieces of information can be uniquely related to the four coefficients in the cubic
equation, which can be optimized for predicting the new, nearly optimal data point.
If (x;, f;, f'1) and (x,, f5, f',) are available, then the optimum x is

! + —
} = X9 — [f{z— fZV-{- ZZW:'(XZ - xl) (518)
where z = E[—fl—:—é]- + i+ f)
[x2 — x1]

w=[2% = fi-f3]"

In a minimization problem, you require x; < x,,f] < 0,and f; > 0 (x; and x,
- bracket the minimum). For the new point (x), calculate f'(X) to determine which
- of the previous two points to replace. The application of this method in nonlinear pro-
gramming algorithms that use gradient information is straightforward and effective.
If the function being minimized is not unimodal locally, as has been assumed
to be true in the preceding discussion, extra logic must be added to the unidimen-
sional search code to ensure that the step size is adjusted to the neighborhood of the
local optimum actually sought. For example, Figure 5.6 illustrates how a large ini-
tial step can lead to an unbounded solution to a problem when, in fact, a local min-
imum is sought.
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minimum

Global
minimum \

FIGURE 5.6
A unidimensional search for a local minimum of a multimodal
objective function leads to an unbounded solution.

EXAMPLE 54 OPTIMIZATION OF A MICROELECTRONICS
PRODUCTION LINE FOR LITHOGRAPHY

You are to optimize the thickness of resist used in a production lithographic process.
There are a number of competing effects in lithography.

1. As the thickness ¢ (measured in micrometers) grows smaller, the defect density
grows larger. The number of defects per square centimeter of resist is given by

DO ="1.5¢ -3
2. The chip yield in fraction of good chips for each layer is given by

1

"7 1+ aDa
where a is the active area of the chip. Assume that 50 percent of the defects are
“fatal” defects (@ = 0.5) detected after manufacturing the chip.

Assume four layers are required for the device. The overall yield is based on a
series formula:
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3. Throughput decreases as resist thickness increases. A typical relationship is
V(wafers/h) = 125 — 50t + 5t2

Each wafer has 100 chip sites with 0.25 cm? active area. The daily production level is
to be 2500 finished wafers. Find the resist thickness to be used to maximize the num-
ber of good chips per hour. Assume 0.5 = ¢ = 2.5 as the expected range. First use
cubic interpolation to find the optimal value of ¢, *. How many parallel production
lines are required for #*, assuming 20 h/day operation each? How many iterations are
needed to reach the optimum if you use quadratic interpolation?

Solution. The objective function to be maximized is the number of good chips per
hour, which is found by multiplying the yield, the throughput, and the number of
chips per wafer (= 100):

100
[1 + 0.5(1.5:7%)(0.25)]*

f=Vn = (125 — 50t + 5t%)

Using initial guesses of ¢ = 1.0 and 2.0, cubic interpolation yielded the following val-
ues of f:

t f f
1.0 4023.05 5611.10
2.0 4101.73 —2170.89
1414 4973.22 —148.70
1.395 4974.60 3.68 (optimum)

Because fis multiplied by 100, f’ after two iterations is small enough. Figure E5.4
is a plot of the objective function f{(z).

:

| :
B R RN

3000

2000

1000

FIGURE E54
Plot of objective function (number of good chips per hour) versus resist

thickness, #(um).
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The throughput for * = 1.395 is
V = 65.02 wafers/h

If a production line is operated 20 h/day, two lines are needed to achieve 2500 wafers/day.
If quadratic interpolation is used with starting points of ¢ = 1, 2, and 3, the fol-
lowing iterative sequence results:

! f f
1.0 4023.05 5611.10
2.0 4101.73 —2170.89
3.0 1945.40 —1891.73
1.535 4904.08 —942.28
1511 4924.73 —810.91
1.434 4968.58 —304.19
1.420 4972.17 —196.10
1.406 4974.20 —81.98
1.401 4974.48 —44.78
1.398 4974.58 —20.24
1.397 4974.60 —10.76
1.396 4974.61 =5.01

5.5 HOW ONE-DIMENSIONAL SEARCH IS APPLIED IN A
MULTIDIMENSIONAL PROBLEM

-In minimizing a function f(x) of several variables, the general procedure is to (a)
calculate a search direction and (b) reduce the value of f(x) by taking one or more
steps in that search direction. Chapter 6 describes in detail how to select search
directions. Here we explain how to take steps in the search direction as a function
of a single variable, the step length «. The process of choosing « is called a unidi-
mensional search or line search.

- Examine Figure 5.7 in which contours of a function of two variables are
displayed:

fxX)=xt— 23+ 3 +x— 2 +5

Suppose that the negative gradient of f(x), — Vf(x), is selected as the search direc-
tion starting at the point x” = [1 2]. The negative gradient is the direction that max-
imizes the rate of change of f(x) in moving toward the minimum. To move in this
direction we want to calculate a new x

X = X,q + as

new

where s is the search direction, a vector, and « is a scalar denoting the distance moved
along the search direction. Note as = Ax, the vector for the step to be taken
(encompassing both direction and distance).
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\(((

s= —Vf(l,2)

Xy

e

FIGURE 5.7
Unidimensional search to bracket the minimum.

Execution of a unidimensional search involves calculating a value of a and
then taking steps in each of the coordinate directions as follows:

In the x, direction: X pewy = X104 T @8
In the x, direction: Xy pew = X004 T @S,

where s, and s, are the two components of s in the x, and x, directions, respectively.
Repetition of this procedure accomplishes the unidimensional search.
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EXAMPLE 5.5 EXECUTION OF A UNIDIMENSIONAL SEARCH

We illustrate two stages in bracketing the minimum in minimizing the function from
Fox (1971)

fix) = xf — 2xx? + x3 + x} — 2, + 5
in the negative gradient direction

4x3 — 4xx; + 2x, — 2]

~ V) = _[ — 22 + 2x,

starting at x” = [1 2] where f(x) = 5. Here

s=—Vf(1,2) = —[—;:l

We start to bracket the minimum’by taking a® = 0.05
x} = x% + (0.05)4) = 1.2 (a)

Xy = x

Do

+ (0.05)(=2) = 1.9 (b)

Steps (a) and (b) consist of one overall step in the direction s = [4 —2]7, and yield
AxT = [0.2 -0.1]. At x!, f(1.2, 1.9) = 4.25, an improvement.

55-
531
51}
49
fx)or 47
- f 45

4.3

4.1

0 0.02 0.04 0.06 0.08 0.10 0.12
Step size o

FIGURE E5.5
Values of f(x) along the gradient vector [4 —2] starting at [1 2]7.
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For the next step, we let a! = 2a® = 0.1, and take another step in the same
direction:

x2 =xl + 014) = 16
x=xl+ 01(-2) = 1.7
Ax! = [04 —0.2]7

At x2, (1.6, 1.7) = 5.10, so that the minimum of f(x) in direction s has been brack-
eted. Examine Figure 5.7. The optimal value of a along the search direction can be
found to be a* = 0.0797 by one of the methods described in this chapter. Figure
ES5.5 shows a plot of f versus a along the search direction.

56 EVALUATION OF UNIDIMENSIONAL SEARCH METHODS

In this chapter we described and illustrated only a few unidimensional search meth-
ods. Refer to Luenberger (1984), Bazarra et al. (1993), or Nash and Sofer (1996) for
many others. Naturally, you can ask which unidimensional search method is best to
use, most robust, most efficient, and so on. Unfortunately, the various algorithms are
problem-dependent even if used alone, and if used as subroutines in optimization
codes, also depend on how well they mesh with the particular code. Most codes sim-
ply take one or a few steps in the search direction, or in more than one direction, with
no requirement for accuracy—only that f{x) be reduced by a sufficient amount.
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PROBLEMS

5.1 Can you bracket the minimum of the following functioh
flx) = &* — 1.5x2
starting at x = 07 Select different step sizes (small and large), and explain your results.
If you have trouble in the analysis, you might plot the function.
5.2 Bracket the minimum of the following functions:
@ f(x) =e*+ 1.5x2
b flx) =0.5(x* + 1)(x + 1)

= 2x%(x — 2)(x + 2)
= 0.1x% — 0.29x5 + 2.31x* — 8.33x> + 12.89x% — 6.8x + 1

5.3 Minimize f = (x — 1)* via (a) Newton’s method and (b) the quasi-Newton (secant)
method, starting at (1) x = —1, (2) x = —0.5, and (3) x = 0.0.

5.4 Apply a sequential one-dimensional search technique to reduce the interval of
- uncertainty for the maximum of the function f = 6.64 + 1.2x — x? from [0,1] to less
than 2 percent of its original size. Show all the iterations.

5.5 List three reasons why a quasi-Newton (secant) search for the minimum of a function
of one variable will fail to find a local minimum.

5.6 Minimize the function f = (x — 1)* Use quadratic interpolation but no more than a
maximum of ten function evaluations. The initial three points selected are x; = 0, x,
= 0.5, and x; = 2.0.

5.7 Repeat Problem 5.6 but use cubic interpolation via function and derivative evaluations.
Use x; = 0.5 and x, = 2.0 for a first guess.
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5.8 Repeat Problem 5.6 for cubic interpolation with four function values: x; = 1.5, x, = 3.0,
x3 = 4.0, and x, = 4.5.

5.9 Carry out the initial and one additional stage of the numerical search for the minimum of
fx)=2*-5x2-8 x=1

by (a) Newton’s method (start at x = 1), (b) the quasi-Newton (secant) method (pick a
starting point), and (c) polynomial approximation (pick starting points including x = 1).

5.10 Find the maximum of the following function
fx)=1—-8x+ 22— Px* +4x* +8x° — §x°
Hint: f'(x) = (1 + x)(2 — x)*

(a) Analytically. (b) By Newton’s method (two iterations will suffice). Start at x = —2.
List each step of the procedure. (c) By quadratic interpolation (two iterations will suf-
fice). Start at x = —2. List each step of the procedure.

5.11 Determine the relative rates of convergence for (1) Newton’s method, (2) a finite dif-
ference Newton method, (3) quasi-Newton method, (4) quadratic interpolation, and
(5) cubic interpolation, in minimizing the following functions:
(@x2—6x+3 (b) sin (x) with 0 < x < 27 (c) x* — 20x3 + 0.1x

5.12 The total annual cost of operating a pump and motor C in a particular piece of equip-
ment is a function of x, the size (horsepower) of the motor, namely

C = $500 + $0.9x + $—();:)+3(150,000)

Find the motor size that minimizes the total annual cost.

5.13 A boiler house contains five coal-fired boilers, each with a nominal rating of 300 boiler horse-
power (BHP). If economically justified, each boiler can be operated at a rating of 350 percent
of nominal. Due to the growth of manufacturing departments, it has become necessary to install
additional boilers. Refer to the following data. Determine the percent of nominal rating at which
the present boilers should be operated. Hint: Minimize total costs per year BHP output.

Data: The cost of fuel, coal, including the cost of handling coal and removing cin-
ders, is $7 per ton, and the coal has a heating value of 14,000 Btu/Ib. The overall effi-
ciency of the boilers, from coal to steam, has been determined from tests of the pres-
ent boilers operated at various ratings as:

Percent of Percent
nominal overall thermal
rating, R efficiency, E

100 75
150 76
200 74
225 72
250 69
275 65

300 61
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The annual fixed charges C in dollars per year on each boiler are given by the
equation:
Cr = 14,000 + 0.04R>

Assume 8550 hours of operation per year.
Hint: You will find it helpful to first obtain a relation between R and E by least
squares (refer to Chapter 2) to eliminate the variable E.

5.14 A laboratory filtration study is to be carried out at constant rate. The basic equation
(Cook, 1984) comes from the relation

(Pressure drop )(Filter area)
(Fluid viscosity )(Cake thickness)

Flow-rate o<

Cook expressed filtration time as

- BAP L A? ( +b)
¢ M xexp (—ax,

where 1, = time to build up filter cake, min
AP, = pressure drop across cake, psig (20)
A = filtration area, ft? (250)
p = filtrate viscosity, centipoise (20)
M = mass flow of filtrate, 1b,/min (75)
¢ = solids concentration in feed to filter, Ib_/lb_ filtrate (0.01)
x, = mass fraction solids in dry cake
a = constant relating cake resistance to solids fraction (3.643)
h = constant relating cake resistance to solids fraction (2.680) .

B =32 X 1078 (Ib_/ft)?

Numerical values for each parameter are given in parentheses. Obtain the maximum
time for filtration as a function of x. by a numerical unidimensional search.

5.15 An industrial dryer for granular material can be modeled (Becker et al., 1984) with the
total specific cost of drying C($/m>) being

(FiCys + UA)ATC,
Y AH. + PC, + C},

C

[1.767 In(W,/Wy)/BV,]

where A = heat transfer area of dryer normal to the air flow, m? (153.84)
B = constant, function of air plenum temperature and initial moisture level
C’; = unit cost of electricity, $/kWh (0.0253)
C’, = unit cost of labor, $/h (15) ‘
C’_ = unit cost of propane, $/kg (0.18)
C_, = specific heat of air, J/kg K (1046.75)
F, = flow-rate of air, kg/h (3.38 X 10°)
AH_ = heat combustion of propane, J/kg (4.64 X 107)
P = electrical power, kW (188)
AT = temperature difference (T — 7)), K; the plenum air temperature 7 minus
the inlet air temperature T, (7| = 390 K)
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U = overall heat transfer coefficient from dryer to atmosphere,
W/(m?)(K)(45)
V, = total volume of the dryer, m? (56)
W), = final grain moisture content (dry basis), kg/kg (0.1765)
W, = initial moisture content (dry basis), kg/kg (0.500)

Numerical values for each parameter are given in parentheses. Values for the coefficient
are given by

B = (—0.263 1125 + 0.0028958T) W, 02368123 +0.000966T)

Find the minimum cost as a function of the plenum temperature T (in kelvin).

5.16 The following is an example from D. J. Wilde (1979).

The first example was formulated by Stoecker* to illustrate the steepest
descent (gradient) direct search method. It is proposed to attach a vapor
recondensation refrigeration system to lower the temperature, and conse-
quently vapor pressure, of liquid ammonia stored in a steel pressure vessel,
for this would permit thinner vessel walls. The tank cost saving must be
traded off against the refrigeration and thermal insulation cost to find the
temperature and insulation thickness minimizing the total annual cost.
Stoecker showed the total cost to be the sum of insulation cost i = 400x%?
(x is the insulation thickness, in.), the vessel cost v = 1000 + 22(p — 14.7)12
(p is the absolute pressure, psia), and the recondensation cost r = 144(80
— B/x (t is the temperature, °F). The pressure is related to the temperature by

Inp = —3950(r — 460)~" + 11.86

By direct gradient search, iterated 16 times from a starting temperature of 50°F, the

total annual cost is found to have a local minimum at x = 5.94 in. and ¢ = 6.29°F,

where the cost is $53,400/yr. The reader can verify, however, that an ambient sys-

tem (80°F) without any recondensation only costs $52,000/yr, a saving of 3%.
Is the comment in the example true?

*Stoecker, W. F. In “Design of Thermal Systems.” McGraw-Hill, New York (1971), pp. 152-155.
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THE NUMERICAL OPTIMIZATION of general nonlinear multivariable objective func-
tions requires efficient and robust techniques. Efficiency is important because these
problems require an iterative solution procedure, and trial and error becomes
impractical for more than three or four variables. Robustness (the ability to achieve
a solution) is desirable because a general nonlinear function is unpredictable in its
behavior; there may be relative maxima or minima, saddle points, regions of con-
vexity, concavity, and so on. In some regions the optimization algorithm may
progress very slowly toward the optimum, requiring excessive computer time. For-
tunately, we can draw on extensive experience in testing nonlinear programming
algorithms for unconstrained functions to evaluate various approaches proposed for
the optimization of such functions.

In this chapter we discuss the solution of the unconstrained optimization
problem:

Find: x* = [xf x -+ x}]" thatminimizes - f(x},xp, ... ,x,) = f(X)

Most effective iterative procedures alternate between two phases in the opti-
mization. At iteration k, where the current x is x*, they do the following:

1. Choose a search direction s*
2. Minimize along that direction (usually inexactly) to find a new point

xk+l =xk+a

kgk
where a* is a positive scalar called the step size. The step size is determined by an
optimization process called a line search as described in Chapter 5.

In addition to 1 and 2, an algorithm must specify

3. The initial starting vector x° = [x? x -+ x?]7 and
4. The convergence criteria for termination.

From a given starting point, a search direction is determined, and f(x) is mini-
mized in that direction. The search stops based on some criteria, and then a new
search direction is determined, followed by another line search. The line search can
be carried out to various degrees of precision. For example, we could use a simple
successive doubling of the step size as a screening method until we detect the opti-
mum has been bracketed. At this point the screening search can be terminated and
a more sophisticated method employed to yield a higher degree of accuracy. In any
event, refer to the techniques discussed in Chapter 5 for ways to carry out the line

~search.

The NLP (nonlinear programming) methods to be discussed in this chapter dif-
fer mainly in how they generate the search directions. Some nonlinear program-
ming methods require information about derivative values, whereas others do not
use derivatives and rely solely on function evaluations. Furthermore, finite differ-
ence substitutes can be used in lieu of derivatives as explained in Section 8.10. For
differentiable functions, methods that use analytical derivatives almost always use
less computation time and are more accurate, even if finite difference approxima-
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tions are used. Symbolic codes can be employed to obtain analytical derivatives but
this may require more computer time than finite differencing to get derivatives. For
nonsmooth functions, a function-values-only method may. be more successful than
using a derivative-based method. We first describe some simple nonderivative
methods and then present a series of methods that use derivative information. We
also show how the nature of the objective function influences the effectiveness of
the particular optimization algorithm.

6.1 METHODS USING FUNCTION VALUES ONLY

Some methods do not require the use of derivatives in determining the search direc-
tion. Under some circumstances the methods described in this section can be used
effectively, but they may be inefficient compared with methods discussed in subse-
quent sections. They have the advantage of being simple to understand and execute.

6.1.1 Random Search

A random search method simply selects a starting vector x°, evaluates f{x) at x°, and
then randomly selects another vector x! and evaluates f{x) at x!. In effect, both a
search direction and step length are chosen simultaneously. After one or more
stages, the value of f{x*) is compared with the best previous value of fix) from
among the previous stages, and the decision is made to continue or terminate the
procedure. Variations of this form of random search involve randomly selecting a
search direction and then minimizing (possibly by random steps) in that search
direction as a series of cycles. Clearly, the optimal solution can be obtained with a
probability of 1 only as k — oo but as a practical matter, if the objective function
is quite flat, a suboptimal solution may be quite acceptable. Even though the
method is inefficient insofar as function evaluations are concerned, it may provide
a good starting point for another method. You might view random search as an
extension of the case study method. Refer to Dixon and James (1980) for some
practical algorithms.

6.1.2 Grid Search

Methods of experimental design discussed in most basic statistics books can be
applied equally well to minimizing f(x) (see Chapter 2). You evaluate a series of
points about a reference point selected according to some type of design such as
the ones shown in Figure 6.1 (for an objective function of two variables). Next
you move to the point that improves the objective function the most, and repeat.
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FIGURE 6.1
Various grid search designs to select vectors x to evaluate f{x).

For n = 30, we must examine 330 — 1 = 2.0588 X 10!“ values of f(x) if a three-
level factorial design is to be used, obviously a prohibitive number of function
evaluations. :
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X, X2

@f ® b fo (%)

FIGURE 6.2
Execution of a univariate search on two different quadratic functions.

6.1.3 Univariate Search

Another simple optimization technique is to select n fixed search directions (usu-
ally the coordinate axes) for an objective function of n variables. Then f(x) is min-
imized in each search direction sequentially using a one-dimensional search. This
method is effective for a quadratic function of the form

n

= 2
H(x) = 2 CX;i
i=1
because the search directions line up with the principal axes as indicated in Figure
6.2a. However, it does not perform satisfactorily for more general quadratic objec-
tive functions of the form

n n

fx) = 2 djx;x;
i=1 j=1
as illustrated in Figure 6.2b. For the latter case, the changes in x decrease as the
optimum is neared, so many iterations will be required to attain high accuracy.

6.1.4 Simplex Search Method

The method of the “Sequential Simplex” formulated by Spendley, Hext, and
Himsworth (1962) selects points at the vertices of the simplex at which to evaluate
f(x). In two dimensions the figure is an equilateral triangle. Examine Figure 6.3. In
three dimensions this figure becomes a regular tetrahedron, and so on. Each search
direction points away from the vertex having the highest value of f{x) to the other
vertices in the simplex. Thus, the direction of search changes, but the step size is
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FIGURE 6.3
Reflection to a new point in the simplex method.
At point 1, f(x) is greater than f at points 2 or 3.

fixed for a given size simplex. Let us use a function of two variables to illustrate the
procedure.

At each iteration, to minimize f(x), f(x) is evaluated at each of three vertices of
the triangle. The direction of search is oriented away from the point with the high-
est value for the function through the centroid of the simplex. By making the search
direction bisect the line between the other two points of the triangle, the direction
goes through the centroid. A new point is selected in this reflected direction (as
shown in Figure 6.3), preserving the geometric shape. The objective function is then
evaluated at the new point, and a new search direction is determined. The method
proceeds, rejecting one vertex at a time until the simplex straddles the optimum. Var-
ious rules are used to prevent excessive repetition of the same cycle or simplexes.

As the optimum is approached, the last equilateral triangle straddles the optimum
point or is within a distance of the order of its own size from the optimum (examine
Figure 6.4). The procedure cannot therefore get closer to the optimum and repeats
itself so that the simplex size must be reduced, such as halving the length of all the
sides of the simplex containing the vertex where the oscillation started. A new simplex
composed of the midpoints of the ending simplex is constructed. When the simplex
size is smaller than a prescribed tolerance, the routine is stopped. Thus, the optimum
position is determined to within a tolerance influenced by the size of the simplex.

Nelder and Mead (1965) described a more efficient (but more complex) version
of the simplex method that permitted the geometric figures to expand and contract
continuously during the search. Their method minimized a function of n variables
~using (n + 1) vertices of a flexible polyhedron. Details of the method together with
a computer code to execute the algorithm can be found in Avriel (1976).

6.1.5 Conjugate Search Directions

Experience has shown that conjugate directions are much more effective as search
directions than arbitrarily chosen search directions, such as in univariate search, or
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X2

X1

FIGURE 64 >

Progression to the vicinity of the optimum and oscillation around the optimum
using the simplex method of search. The original vertices are xJ, x?, and x3. The
next point (vertex) is 5(}). Succeeding new vertices are numbered starting with 1
and continuing to 13 at which point a cycle starts to repeat. The size of the
simplex is reduced to the triangle determined by points 7, 14, and 15, and then
the procedure is continued (not shown).

even orthogonal search directions. Two directions s’ and s/ are said to be conjugate
with respect to a positive-definite matrix Q if

()'Q(s)) = 0 (6.1)

In general, a set of n linearly independent directions of search %, s! . . ., s""! are
said to be conjugate with respect to a positive-definite square matrix Q if

)7Qs’=0 O0=i#j=n—-1 (6.2)

In optimization the matrix Q is the Hessian matrix of the objective function, H.
For a quadratic function f(x) of n variables, in which H is a constant matrix, you are
guaranteed to reach the minimum of f(xX) in n stages if you minimize exactly on each
stage (Dennis and Schnabel, 1996). In n dimensions, many different sets of conju-
gate directions exist for a given matrix Q. In two dimensions, however, if you choose
an initial direction s! and Q, s? is fully specified as illustrated in Example 6.1.



188 PART II: Optimization Theory and Methods

Orthogonality is a special case of conjugacy because when Q = I, (s’)’s/ = 0
in Equation (6.2). If the coordinates of x are translated and rotated by suitable
transformations so as to align the new principal axes of H(x) with the eigenvectors
of H(x) and to place the center of the coordinate system at the stationary point of
J(x) (refer to Figures 4.12 through 4.15), then conjugacy can be interpreted as
orthogonality in the space of the transformed coordinates.

- Although authors and practitioners refer to a class of unconstrained optimiza-
tion methods as “methods that use conjugate directions,” for a general nonlinear
function, the conjugate directions exist only for a quadratic approximation of the
function at a single stage k. Once the objective function is modeled by a new
approximation at stage (k + 1), the directions on stage k are unlikely to be conju-
gate to any of the directions selected in stage (k + 1).

EXAMPLE 6.1 CALCULATION OF CONJUGATE DIRECTIONS

Suppose we want to niinimizeA Ax) = 2x? + x3 — 3 starting at (x%7T = [1 1] with the
initial direction being s° = [—4 —2]”. Find a conjugate direction to the initial direc-
tion s°.

Solution o

0
0 = — =
s H(x) 5

N A

4
0
We need to solve Equation (6.2) for s! = [s} s}]” with Q = Hand s° = [—4 —2].

4 0]|sl
-1)|4 2 =
nls 2]lg 2] =0

Because s! is not unique, we can pick s! = 1 and determine s.
1 1 2

1
{—16 —4] | =0
52

Thus s! = [1 —4]7 is a direction conjugate to s° = [—4 —2]7.

We can reach the minimum of f{x) in two stages using first s° and then s!. Can
we use the search directions in reverse order? From x° = [1 1]7 we can carry out a
numerical search in the direction s° = [—4 —2]T to reach the point x'. Quadratic
interpolation can obtain the exact optimal step length because f'is quadratic, yielding
a = 0.27778. Then

1 4 —0.1111
Lo x0— %= | | + 027778 -
S 2| 7| 04444
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For the next stage, the search direction is s' = [1 —4]7, and the optimal step length
calculated by quadratic interpolation is a! = 0.1111. Hence

~0.1111 1 0
= x! + als! = +o01111 1=
X =x'+als [ 0.4444] [—4} 1:0}

as expected.

6.1.6 Summary

As mentioned earlier, nonlinear objective functions are sometimes nonsmooth due to
the presence of functions like abs, min, max, or if-then-else statements, which can
- cause derivatives, or the function itself, to be discontinuous at some points. Uncon-
strained optimization methods that do not use derivatives are often able to solve non-
smooth NLP problems, whereas methods that use derivatives can fail. Methods
employing derivatives can get “stuck” at a point of discontinuity, but the function-
value-only methods are less affected. For smooth functions, however, methods that
use derivatives are both more accurate and faster, and their advantage grows as the
number of decision variables increases. Hence, we now turn our attention to uncon-
strained optimization methods that use only first partial derivatives of the objective
~ function.

6.2 METHODS THAT USE FIRST DERIVATIVES

A good search direction should reduce (for minimization) the objective function so
that if x° is the original point and x! is the new point

f(x') < f(x")

Such a direction s is called a descent direction and satisfies the following require-
ment at any point -

Vif(x)s < 0

To see why, examine the two vectors Vf(x*) and s* in Figure 6.5. The angle
between them is 6, hence

Vif(x)s" = | VA(x")||s"] cos 6

If = 90° as in Figure 6.5, then steps along s* do not reduce (improve) the value of
f(x). If 0 = 6 < 90°, no improvement is possible and f(x) increases. Only if 6 > 90°
does the search direction yield smaller values of f(x), hence VTf(x")s" <0.

We first examine the classic steepest descent method of using the gradlent and
then examine a conjugate gradient method.
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6.2.1 Steepest Descent

The gradient is the vector at a point X that gives the (local) direction of the greatest
rate of increase in f(x). It is orthogonal to the contour of f(x) at x. For maximiza-
tion, the search direction is simply the gradient (when used the algorithm is called

“steepest ascent”); for minimization, the search direction is the negative of the gra-
dient (“steepest descent”)

sk = —Vf(x’,‘)' : - (6.3)

In steepest descent at the kth stage, the transition from the current point x* to the
new point x**! is given by the following expression:

X = gk + Axk = xt + alst = xt — akVf(xt) 64)

where Ax* = vector from x*to x**!

s* = search direction, the direction of steepest descent
a* = scalar that determines the step length in direction s*

The negative of the gradient gives the direction for minimization but not the mag-
nitude of the step to be taken, so that various steepest descent procedures are pos-

X2
-Vf(x")
Region of
‘ valid
search directions
X
FIGURE 6.5

Identification of the region of possible search directions.
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sible, depending on the choice of a*. We assume that the value of f(x) is continu-
- ously reduced. Because one step in the direction of steepest descent will not, in gen-
eral, arrive at the minimum of f{x), Equation (6.4) must be applied repetitively until
the minimum is reached. At the minimum, the value of the elements of the gradi-
ent vector will each be equal to zero. -

The step size o is determined by a line search, using methods like those
described in Chapter 5. Although inexact line searches (not continued to the exact
minimum) are always used in practice, insight is gained by examining the behavior
of steepest descent when an exact line search is used.

First, let us consider the perfectly scaled quadratic objective function
f(x) = x} + x3, whose contours are concentric circles as shown in Figure 6.6.
Suppose we calculate the gradient at the point x” = [2 2]

Vi) = Bﬁ] Vi(2.2) = [ﬂ H(x) = H = [(2, ‘2’]

The direction of steepest descent is

[}

X2

(2.2)

—we.n =]

_Vf(1,-1.73) = —2-00]
ST [3.46

(1,-1.73)

FIGURE 6.6
Gradient vector for f(x) = x} + x3.
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FIGURE 6.7 _
Steepest descent method for a general quadratic function.

Observe that s is a vector pointing toward the optimum at (0, 0). In fact, the gradi-
ent at any point passes through the origin (the optimum).

On the other hand, for functions not so nicely scaled and that have nonzero off-
diagonal terms in the Hessian matrix (corresponding to interaction terms such as
XX, ), then the negative gradient direction is unlikely to pass directly through the
optimum. Figure 6.7 illustrates the contours of a quadratic function of two variables
that includes an interaction term. Observe that contours are tilted with respect to the
axes. Interaction terms plus poor scaling corresponding to narrow valleys, or ridges,
cause the gradient method to exhibit slow convergence.

If o* is chosen to minimize f(x* + as*) exactly then at the minimum,
d
—f(x* + as) =0
da

" We illustrate this in Figure 6.8 using the notation
g (@) = f(x + as)

where g* is the function value along the search direction for a given value of a.
Because x* and s* are fixed at known values, g depends only on the step size a.
If s* is a descent direction, then we can always find a positive a that causes f to
decrease.
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k(a) =
f gdfz)ask) Slope = V'f (x)sk < 0
Slope = V£ T(xk + aksk )sk =0
ok
[44
FIGURE 6.8

Exact line search along the search direction s*.

Using the chain rule

"
= (s"TVf(x* + as’)

In an exact line search, we choose a* as the « that minimizes g* (@), so

| _ (s"TVA(x* + as*)| =0 (6.5)
da |o* . ot . . .
as shown in Figure 6.8. But when the inner product of two vectors is zero, the vec-
tors are orthogonal, so if an exact line search is used, the gradient at the new point
x**1 is orthogonal to the search direction s*. In steepest descent s* = —V f(x%), so
the gradients at points x* and x**! are orthogonal. This is illustrated in Figure 6.7,
which shows that the orthogonality of successive search directions leads to a very
inefficient zigzagging behavior. Although large steps are taken in early iterations,
the step sizes shrink rapidly, and converging to an accurate solution of the opti-
mization problem takes many iterations. ‘
The steepest descent algorithm can be summarized in the following steps:

1. Choose an initial or starting point x°. Thereafter at the point x*:
2. Calculate (analytically or numerically) the partial derivatives

f(x)
ox;

J

j=1,...,n
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3. Calculate the search vector
| st = — Vf(x})
4. Use the relation
xkt1 = xk 4 ks

to obtain the value of x**!. To get a* minimize g¥(a) numerically, as described in
Chapter 5. '

5. Compare f(x**!) with f(x*): if the change in f(x) is smaller than some tolerance,
stop. If not, return to step 2 and set k = k + 1. Termination can also be specified
by stipulating some tolerance on the norm of VA(x¥).

Steepest descent can terminate at any type of stationary point, that is, at any
point where the elements of the gradient of f(x) are zero. Thus you must ascertain
if the presumed minimum is indeed a local minimum (i.e., a solution) or a saddle
point. If it is a saddle point, it is necessary to employ a nongradient method to move
away from the point, after which the minimization may continue as before. The sta-
tionary point may be tested by examining the Hessian matrix of the objective func-
tion as described in Chapter 4. If the Hessian matrix is not positive-definite, the sta-
tionary point is a saddle point. Perturbation from the stationary point followed by
optimization should lead to a local minimum x*.

The basic difficulty with the steepest descent method is that it is too sensitive
to the scaling of f(x), so that convergence is very slow and what amounts to oscil-
lation in the x space can easily occur. For these reasons steepest descent or ascent
is not a very effective optimization technique. Fortunately, conjugate gradient
methods are much faster and more accurate.

6.2.2 Conjugate Gradient Methods

The earliest conjugate gradient method was devised by Fletcher and Reeves (1964).
If f(x) is quadratic and is minimized exactly in each search direction, it has the
desirable features of converging in at most » iterations because its search directions
are conjugate. The method represents a major improvement over steepest descent
with only a marginal increase in computational effort. It combines current infor-
mation about the gradient vector with that of gradient vectors from previous itera-
tions (a memory feature) to obtain the new search direction. You compute the
search direction by a linear combination of the current gradient and the previous
search direction. The main advantage of this method is that it requires only a small
‘amount of information to be stored at each stage of calculation and thus can be
applied to very large problems. The steps are listed here.

Step 1. At x° calculate f(x%). Let
= — V)

Step 2. Save Vf(x°) and compute

x! = x° + a’s’
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by minimizing f(x) with respect to a in the s° direction (i.e., carry out a unidimen-
sional search for a?).

Step 3. Calculate f(x!), Vf(x'). The new search direction is a linear combina-
tion of s° and Vf(x!):

S

Vif(x') VF(x')
1 — _ 1
$ = TV S Vi)
For the kth iteration the relation is
VTf(xk+1)Vf(Xk+l)
k+1 — k+1 k
T = -Vfx*"') +s V) V) (6.6)

For a quadratic function it can be shown that these successive search directions are
conjugate. After n iterations (k = n), the quadratic function is minimized. For a
nonquadratic function, the procedure cycles again with x**! becoming x°.

Step 4. Test for convergence to the minimum of f(x). If convergence is not
attained, return to step 3.

Step n. Terminate the algorithm when | Vf(x*)| is less than some pre--
scribed tolerance.

Note that if the ratio of the inner products of the gradients from stage k + 1 rel-
ative to stage k is very small, the conjugate gradient method behaves much like the
steepest descent method. One difficulty is the linear dependence of search direc-
tions, which can be resolved by periodically restarting the conjugate gradient
method with a steepest descent search (step 1). The proof that Equation (6.6) yields
conjugate directions and quadratic convergence was given by Fletcher and Reeves
(1964). _

In doing the line search we can minimize a quadratic approximation in a given
search direction. This means that to compute the value for a for the relation x*~! =
x* + as* we must minimize

f(x) = f(xt + ast) = f(x) + VIf(x*) as* + L(as’)TH(x") (ast)  (6.7)

where Ax* = as*. To get the minimum of f(x* + as*), we differentiate Equation
(6.3) with respect to a and equate the derivative to zero

df(x* + as*)

o =0 = VIf(x")st + (sH)TH(x') as* (6.8)
with the result
ot VTf(x")s*
BT ©9

For additional details concerning the application of conjugate gradient meth-
ods, especially to large-scale and sparse problems, refer to Fletcher (1980), Gill et
al. (1981), Dembo et al. (1982), and Nash and Sofer (1996).
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EXAMPLE 6.2 APPLICATION OF THE FLETCHER-REEVES
'CONJUGATE GRADIENT ALGORITHM
We solve the problem known as Rosenbrock’s function
Minimize: f(x) = 100(x, — x})* + (1 — x,)?
starting at @ = [—1.2 1.0]7. The first few stages of the Fletcher-Reeves procedure
are listed in Table E6.2. The trajectory as it moves toward the optimum is shown in
Figure E6.2.
TABLE E6.2
Results for Example 6.2 using the Fletcher-Reeves method
Number :
of function 3f(x) 9f(x)
Iteration calls fx® x, X, ax; ax,
0 1 24.2 —-1.2 1.0 —-215.6 —88.00
1 4 4.377945 —1.050203 1.061141 —21.65 —-8.357
5 14 3.165142 —0.777190 0.612232 —1.002 —1.6415
10 28 1.247687 —0.079213  —0.025322 -3.071 —5.761
15 41 0.556612 0.254058 0.063189 —1.354 —-0.271
20 57 0.147607 0.647165 0.403619 3.230 —3.040
25 69 0.024667 0.843083 0.710119 —0.0881 -0.1339
30 80 0.0000628 0.995000 0.989410 0.2348 —0.1230
35 90 1.617 X 10715 1.000000 1.000000 —1.60X%x10"% —3.12x1078
X3
3.0
25
20

. 1 . . .
///1 0 L5 x,
FIGURE E6.2

Search trajectory for the Fletcher—Reeves algorithm (the numbers
designate the iteration).
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6.3 NEWTON’S METHOD

From one viewpoint the search direction of steepest descent can be interpreted as
being orthogonal to a linear approximation (tangent to) of the objective function at
point x*; exarmne Figure 6.9a. Now suppose we make a quadratic approximation
of ix) at xf

f(x) =~ f(x5) + VIF(x) Axt + L(Ax)TH(x*) Axt (6.10)

where H(x*) is the Hessian matrix of(x) defined in Chapter 4 (the matrix of sec-
ond partial derivatives with respect to x evaluated at x*). Then it is possible to take
into account the curvature of f{x) at x* in determining a search direction as described
later on.

Newton’s method makes use of the second-order (quadratic) approximation of
fix) at x* and thus employs second-order information about f{x), that is, informa-
tion obtained from the second partial derivatives of f{x) with respect to the inde-
pendent variables. Thus, it is possible to take into account the curvature of f(x) at
x‘and identify better search directions than can be obtained via the gradient
method. Examine Figure 6.9b.

The minimum of the quadratic approximation of f{ix) in Equation (6.10) is
obtained by differentiating (6.10) with respect to each of the components of Ax and
equating the resulting expressions to zero to give

Vi(x) = VAx) + H(x*)Ax* = 0 | (6.11)

or

k+1

Xt —xt = Axt = — [H(x")]7! VA(xH) (6.12)

where [H(x*)]™! is the inverse of the Hessian matrix H(x*). Equation (6.12)
reduces to Equation (5.5) for a one-dimensional search.

Note that both the direction and step length are spemﬁed as a result of Equa-
tion (6.11). If f(x) is actually quadratic, only one step is required to reach the min-
imum of f{x). For a general nonlinear objective function, however, the minimum of
fix) cannot be reached in one step, so that Equation (6.12) can be modified to con-
form to Equation (6.7) by introducing the parameter for the step length into (6.12).

Xt — xf = —of[H(x*)] ' VA(x) - © (6.13)
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s = —Vf(xh)

~— — _Linearized f(x)

(a) Steepest descent: first-order approximation
(linearization) of f(x) at x*

X2

s = — [V (xH] 'V (x)
/

Quadratic approximation

of fx)

(b) Newton’s method: second-order (quadratic)
approximation of f(x) at x*

FIGURE 6.9
Comparison of steepest descent with Newton’s method from
the viewpoint of objective function approximation.

Observe that the search direction s is now given (for minimization) by
st = —[H(x)]"' VA(x") (6.14)

and that the step length is . The step length o can be evaluated numerically as
described in Chapter 5. Equation (6.13) is applied iteratively until some termination
criteria are satisfied. For the “pure” version of Newton’s method, @« = 1 on each
step. However, this version often does not converge if the initial point is not close
enough to a local minimum.
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Also note that to evaluate Ax in Equation (6.12), a matrix inversion is not nec-
essarily required. You can take its precursor, Equation (6.11), and solve the follow-
ing set of linear equations for Ax*

H(x') Axt = — Vf(x}) (6.15)

a procedure that often leads to less round-off error than calculating s via the inver-
sion of a matrix.

EXAMPLE 6.3 APPLICATION OF NEWTON’S METHOD TO A
CONVEX QUADRATIC FUNCTION

We minimize the function

f(x) = 4xi + x — 2x0x,
starting at x° = [1 l]T

8x1 —sz:l

e = | 31 22

witha =1,

Ax’ = —H! Vf(x°) = —[

QA= O\
WIN O\

hence,

x! =x* =x%+ Ax° =B:l+[:ﬂ=[g]
f(x*) =0

Instead of taking the inverse of H, we can solve Equation (6.15)

B N
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20
1.0
x, 0
0.5
- 1.0 - 1.0 /
2.0
' Contours of
f(x) =4x} + x2 — 2x,x
~20 s N0 Vo L T
-20 -1.0 0 1.0 20
Xy
FIGURE E6.3
which gives
Ax{ = -1
Axd = -1
as before. The search direction s = —H™! Vf(x°) is shown in Figure E6.3

EXAMPLE 6.4 APPLICATION OF NEWTON’S METHOD AND
QUADRATIC CONVERGENCE

- If we minimize the nonquadratic function

Fx) = (x; = 2)* + (x; — 2)°x3 + (x, + 1)

from the starting point of (1, 1), can you show that Newton’s method exhibits quad-
ratic convergence? Hint: Show that

71— x|

W < c¢ (see Section 5.3)
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FIGURE Eé6.4

Solution. Newton’s method pfoduces the following sequences of values for x;, x,,
and [f(x**!) — f(x¥)] (you should try to verify the calculations shown in the following
table; the trajectory is traced in Figure E6.4).

Iteration x, x, fEH*) — f(x5)
0 1.000000 1.000000 6.000
1 1.000000 —-0.500000 1.500
2 1.391304 -0.695652 4.09 X 107!
3 1.745944 -0.948798 6.49 X 1072
4 1.986278 -1.048208 2.53 X 1073
5 1.998734 -1.000170 1.63 X 106
6 1.9999996 -1.000002 275 X 10712

You can calculate between iterations 2»>and 3 that ¢ = 0.55; and between 3 and
4 that ¢ = 0.74. Hencé, quadratic convergence can be demonstrated numerically.
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Newton’s method usually requires the fewest iterations of all the methods dis-
cussed in this chapter, but it has the following disadvantages:

1. The method does not necessarily find the global solution if multiple local solu-
tions exist, but this is a characteristic of all the methods described in this chapter.

2. It requires the solution of a set of n symmetric linear equations.

3. It requires both first and second partial derivatives, which may not be practical
to obtain.

4. Using a step size of unity, the method may not converge.

Difficulty 3 can be ameliorated by using (properly) finite difference approxi-
mation as substitutes for derivatives. To overcome difficulty 4, two classes of meth-
ods exist to modify the “pure” Newton’s method so that it is guaranteed to converge
to a local minimum from an arbitrary starting point. The first of these, called rrust
region methods, minimize the quadratic approximation, Equation (6.10), within an
elliptical region, whose size is adjusted so that the objective improves at each iter-
ation; see Section 6.3.2. The second class, line search methods, modifies the pure
Newton’s method in two ways: (1) instead of taking a step size of one, a line search
is used and (2) if the Hessian matrix H(x*) is not positive-definite, it is replaced
by a positive-definite matrix that is “close” to H(x*) . This is motivated by the eas-
ily verified fact that, if H(x*) is positive-definite, the Newton direction

st = —[H(x")]™ Vf(x)

is a descent direction, that is
ViT(x)s* < 0

If f(x) is convex, H(x) is positive-semidefinite at all points x and is usually positive-
definite. Hence Newton’s method, using a line search, converges. If f{x) is not
strictly convex (as is often the case in regions far from the optimum), H(x) may not
be positive-definite everywhere, so one approach to forcing convergence is to
replace H(x) by another positive-definite matrix. The Marquardt-Levenberg
method is one way of doing this, as discussed in the next section.

6.3.1 Forcing the Hessian Matrix to Be Positive-Definite

Marquardt (1963), Levenberg (1944), and others have suggested that the Hessian
matrix of f{x) be modified on each stage of the search as needed to ensure that the

'modified H(x),H(x), is positive-definite and well conditioned. The procedure adds
elements to the diagonal elements of H(x)

H(x) = [H(x) + BI] (6.16)

where B is a positive constant large enough to make ﬁ(x) positive-definite when
H(x) is not. Note that with a B sufficiently large, BI can overwhelm H(x) and the
minimization approaches a steepest descent search.
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TABLE 6.1

A modified Marquardt method
Step 1
Pick x° the starting point. Let € = convergence criterion.
Step 2
Set k = 0. Let 8% = 103
Step 3
Calculate Vf(x*).
Step 4
Is |Vf(x*)) < €? If yes, terminate. If no, continue.
Step §
Solve (H(x*) + BT)s* = — Vf(x*)for s*.
Step 6
If Vf7(x*)s* < 0, go tostep 8.
Step 7
Set B* = 28* and go to step 5.
Step 8

Choose a* by a line search procedure so that
fix* + o’sh) < f(x)

Step 9
If certain conditions are met (Dennis and Schnabel, 1996), reduce B '
Go to step 3 with & replaced by k + 1.

A simpler procedure that may result in a suitable value of  is to apply a mod-
ified Cholesky factorization as follows:

H(x*) + D = LLT (6.17)

where D is a diagonal matrix with nonnegative elements [ d; = 0 if H(x) is positive-
definite] and L is a lower triangular matrix. Upper bounds on the elements in D are
calculated using the Gershgorin circle theorem [see Dennis and Schnabel (1996)
for details]. '

A simple algorithm based on an arbitrary adjustment of 8 (a modified Mar-
quardt’s method) is listed in Table 6.1.

EXAMPLE 6.5 APPLICATION OF MARQUARDT’S METHOD

The algorithm listed in Table 6.1 is to be applied to Rosenbrock’s function f(x) =
100(x, — x2)2 + (1 — x,)? starting at x® = [—1.2 1.0]%with H® = H(x).
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TABLE E6.5
Marquardt’s method

Elements of [H(x*) + BI]~!

3f(x) f(x) 51 - > =y

ox 1 ox 2

f(x) X1 %)

242000 —1.2000 1.0000 —215.6000 —88.0000  0.0005 —0.0002 —0.0002 0.0009
4.1498 —1.0315 1.0791 2.1844 3.0284 0.0005 —0.0002 -—0.0002 0.0009
41173  —1.0289 1.0557 —-5.2448 -0.5768  0.0014 —0.0013 - —0.0013  0.0034
39642 —0.9412 09301  12.7861 8.8552  0.0037 -—-0.0059 -—0.0059 0.0130
34776  —0.8542 0.7098 —10.5031 —-3.9772 0.0195 —0.0341 - —0.0341 0.0641
27527  —0.6028 03206 —13.5391 —8.5706 0.0399  —0.0669 —0.0669 0.1170
19132  —-0.3167 0.0580 —7.9993 —84706 0.0464 —0.0557 -—0.0557 0.0718
1.1890  —0.0313 —0.0344 —-25059 —7.0832 0.0519 —0.0328 —0.0328  0.0258
0.6885 0.2278 0.0215 1.2242 —-6.0759 0.0616  —0.0039 —0.0039 0.0052
0.3266 0.4570 0.2031 3.2402 —4.5160 0.0706 0.0322 0.0322  0.0196
0.1275 0.6846 0.4520 3.9595 3.3523  0.0906 0.0861 0.0861  0.0868
0.0237 0.8705 0.7495 26299 —1.6593 0.1148 0.1573 0.1573  0.2203
0.0006 0.9870 0.9721 0.7700 —0.4033  0.1880 0.3273 0.3273  0.5748
0.0000 0.9974 0.9949 —0.0589 0.0269  0.3563 0.7033 0.7033  1.3932
0.0000 0.9999 0.9999 —0.0004 0.0002  0.5138 1.0249 1.0249  2.0494
0.0000 . 1.0000 1.0000 0.0000 —0.0000 0.5001 1.0001 1.0001  2.0050

- 0.0000 1.0000 1.0000

A quadratic interpolation subroutine was used to minimize in each search direc-
tion. Table E6.5 lists the values of fx), x, VAx), and the elements of [H(x) + BI]~! for
each stage of the minimization. A total of 96 function evaluations and 16 calls to the
gradient evaluation subroutine were needed.

6.3.2 Movement in the Search Direction

Up to this point we focused on calculating H or H™!, from which the search direc-
tion s can be ascertained via Equation (6.14) or Ax from Equation (6.15) (for min-
imization). In this section we discuss briefly how far to proceed in the search direc-
tion, that is, select a step length, for a general function f(x). If Ax is calculated from
Equations (6.12) or (6.15), @ = 1 and the step is a Newton step. If @ # 1, then any
procedure can be used to calculate « as discussed in Chapter 5.

Line search. The oldest and simplest method of calculating « to obtain Ax is
via a unidimensional line search. In a given direction that reduces f(x), take a step,
or a sequence of steps yielding an overall step, that reduces f(x) to some acceptable
degree. This operation can be carried out by any of the one-dimensional search
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techniques described in Chapter 5. Early investigators always minimized f(x) as
accurately as possible in a search direction s, but subsequent experience, and to
some extent theoretical results, have indicated that such a concept is invalid. Good
algorithms first calculate a full Newton step (@ = 1) to get x**!, and if f(x*) is not
reduced, backtrack in some systematic way toward x*. Failure to take the full
Newton step in the first iteration leads to loss of the advantages of Newton’s
method near the minimum, where convergence is slow. To avoid very small
decreases in f(x), most algorithms require that the average rate of descent from x*
to x**! be at least some prescribed fraction of the initial rate of descent.in the search
direction. Mathematically this means (Armijo, 1966)

f(x* + als®) = f(x*) + ya VIf(x*)s* (6.18)

Examine Figure 6.10. In practice v is often chosen to be very small, about 1074, so
just a small decrease in the function value is required.

Backtracking can be accomplished in any of the ways outlined in Chapter 5 but
with the objective of locating an x**! for which f(x**!) < f(x*) but moving as far as
possible in the direction s* from x*. The minimum of f(x* + as*) does not have to
be found exactly. As an example of one procedure, at X, where a = 0, you know
two pieces of information about f(x* + as): the values of f(x*) and V7f(x*) s*. After
the Newton step (@ = 1) you know the value of f(x* + s*). From these three pieces
of information you can make a quadratic interpolation to get the value a where the
objective function fler) has a minimum:

_ VIf(x*)st
2[f(x* + s*) — fx*) — VIfA(x")s’]

&= (6.19)

Range of permissible values
of ak

J(x)

[}
|
|
|
}
k T k
N , \Cf(x)+Yan(X)!"
AN | —— .
N : :
A AN L f(x*) +aVTf(x*)s*
< 1
0 N a

FIGURE 6.10
Range of acceptable values for choice of o* to meet criterion (6.20)
with y = 0.02.
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After a is obtained, if additional backtracking is needed, cubic interpolation
can be carried out. We suggest that if a is too small, say & < 0.1, try & = 0.1
instead.

Trust regions. The name trust region refers to the region in which the quad-
ratic model can be “trusted” to represent f(x) reasonably well. In the unidimen-
sional line search, the search direction is retained but the step length is reduced if
the Newton step proves to be unsatisfactory. In the trust region approach, a shorter
step length is selected and then the search direction determined. Refer to Dennis
and Schnabel (1996) and Section 8.5.1 for details.

The trust region approach estimates the length of a max1mal successful step
from x*. In other words, ||x| < p, the bound on the step. Figure 6.11 shows f(x),
the quadratic model of f(x), and the desired trust region. First, an initial estimate
of p or the step bound has to be determined. If knowledge about the problem does

4 — - = /
~ —_—
~~ =
FIGURE 6.11

Representation of the trust region to select the step length. Solid lines are
contours of f{x). Dashed lines are contours of the convex quadratic
approximation of f{x) at x*. The dotted circle is the trust region boundary in
which § is the step length. X, is the minimum of the quadratic model for
which H(x) is positive-definite.

?

Xy
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not help, Powell (1970) suggested using the distance to the minimizer of the quad-
ratic model of f(x) in the direction of steepest descent from x*, the so-called
Cauchy point. Next, some curve or piecewise linear function is determined with an
initial direction of steepest descent so that the tentative point x**! lies on the curve
and is less than p. Figure 6.11 shows s as a straight line of one segment. The trust
region is updated, and the sequence is continued. Heuristic parameters are usually
required, such as minimum and maximum step lengths, scaling s, and so forth.

6.3.3 Termination

No single stopping criterion will suffice for Newton’s method or any of the opti-
mization methods described in this chapter. The following simultaneous criteria are
recommended to avoid scaling problems:

L&) = AxH)| < e (1 + |AxH))) (6.20)

where the “one” on the right-hand side is present to ensure that the right-hand side
is not too small when f(x*) approaches zero. Also :

I+ — x| < &,(1 + %) (6.21)

and

IVAE)| < & (6.22)

6.3.4 Safeguarded Newton’s Method

Several numerical subroutine libraries contain “safeguarded” Newton codes using
the ideas previously discussed. When first and second derivatives can be computed
quickly and accurately, a good safeguarded Newton code is fast, reliable, and locates
a local optimum very accurately. We discuss this NLP software in Section 8.9.

6.3.5 Computation of Derivatives

From numerous tests involving optimization of nonlinear functions, methods that
use derivatives have been demonstrated to be more efficient than those that do not.
By replacing analytical derivatives with their finite difference substitutes, you can
avoid having to code formulas for derivatives. Procedures that use second-order
information are more accurate and require fewer iterations than those that use only
first-order information(gradients), but keep in mind that usually the second-order
information may be only approximate as it is based not on second derivatives them-
selves but their finite difference approximations.
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6.4 QUASI-NEWTON METHODS

Procedures that compute a search direction using only first derivatives of f provide
an attractive alternative to Newton’s method. The most popular of these are the
quasi-Newton methods that replace H(x*) in Equation (6.11) by a positive-definite
approximation H*:

H's* = - Vf(x*) (6.23)

H* is initialized as any positive-definite symmetric matrix (often the identity
matrix or a diagonal matrix) and is updated after each line search using the changes
in x and in Vf(x) over the last two points, as measured by the vectors

dt=x**1 — x* (6.24)

and

y' = VAx™) = VAXY) (6.25)
One of the most efficient and widely used updating formula is the BFGS update.
Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970) independ-
ently published this algorithm in the same year, hence the combined name BFGS.
Here the approximate Hessian is given by
PO () (T
(dk)Tyk (dk)Tﬁkdk

H! = HE + (6.26)

If B is positive-definite and (d*)"y* > 0, it can be shown that H: ! 1s positive-
definite (Dennis and Schnabel, 1996, Chapter 9). The COl‘ldlthIl (@)’y* > 0 can
be interpreted geometrically, since

(d9)7y* = o*(s")T[VAX™T) = Vfx)]
= af[(s)T VAX"T) — ()" VAXY)]
= a*(slope2 — slope1)

The quantity slope2 is the slope of the line search objective function gk(a) at
a = o (see Figure 6.8) and slopel is its slope at @ = 0, so (d*)"y* > 0 if and
only if slope2 > slopel. This condition is always satisfied if f is strictly convex. A
good line search routine attempts to meet this condition; if it is not met, then HE is
‘not updated.

If the BFGS algonthm is applied to a positive-definite quadratic function of n
variables and the line search is exact, it will minimize the function in at most » iter-
ations (Dennis and Schnabel, 1996, Chapter 9). This is also true for some other
updating formulas. For nonquadratic functions, a good BFGS code usually requires
‘more iterations than a comparable Newton implementation and may not be as accu-
rate. Each BFGS iteration is generally faster, however, because second derivatives
are not required and the system of linear equations (6.15) need not be solved.
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EXAMPLE 6.6 APPLICATION OF THE BFGS METHOD

Apply the BFGS method to find the minimum of the function f(x) = x{ — 2x,x3 +
2 +x? -2 +5.

Use a starting point of (1,2) and terminate the search when f changes less than
0.00005 between iterations. The contour plot for the function was shown in Figure 5.7.

Solution. Using the Optimization Toolbox from MATLAB, the BFGS method
requires 20 iterations before the search is terminated, as shown below.

TABLE E6.6
BFGS method
0 i)
Iteration X, Xy fx, xp) % %
1 2

1.00000 2.00000 5.00000 —4.00000 - 2.00000

1 1.29611 1.82473 4.10866 —0.15866 0.28966
2 1.29192 1.73556 4.08964 0.24022 0.13299
3 1.22980 1.63069 4.06680 —0.12218 0.23654
4 1.22409 1.54972 4.05285 0.19694 0.10263
5 1.17160 1.46528 4.03803 —0.09085 0.18524
6 1.16530 1.39587 4.02876 0.15372 0.07589
7 1.12318 1.33087 4.01998 —0.06513 0.13867
8 1.11718 1.27501 4.01446 0.11408 0.05383
9 1.08519 1.22728 4.00972 —0.04507 0.09927
10 1.08012 1.18504 4.00676 0.08077 0.03678
11 1.05705 1.15150 4.00442 —0.03024 0.06828
12 1.05314 1.12129 4.00297 0.05494 0.02438
13 - 1.03725 1.09861 4.00190 —0.01977 0.04544
14 1.03444 1.07795 4.00125 . 0.03623 0.01578
15 1.02386 1.06305 4.00079  —0.01269 0.02950
16 1.02195 1.04940 4.00051 0.02335 0.01005
17 1.01509 1.03981 4.00032 —0.00803 0.01882 .
18 1.01382 1.03100 4.00020 0.01482 0.00632
19 1.00945 1.02492 4.00012 —0.00503 0.01186
20 1.00863 1.01932 4.00008 0.00930 0.00395

For problems with hundreds or thousands of variables, storing and manipulat-
ing the matrices H* or V2f(x*) requires much time and computer memory, mak-
ing conjugate gradient methods more attractive. These compute s* using formulas
involving no matrices. The Fletcher-Reeves method uses

s = —Vf(x°)
k — _Vf(xk) + Bksk_l, k=1,2,...
where

VfT(x*) VF(x)
VAT () VAT

Bt =
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The one-step BFGS formula is usually more efficient than the Fletcher—Reeves
method. It uses somewhat more complex formulas:

# =~ V()

(DX
(yk— I)Tdk—l

# = ~Vf(x) - ("' — a )

CA I S (N i 9)
[(yk—l)Tdk—l]z

+ vy k=1,2,...

This formula follows from the BEGS formula for (H¥)~! by (1) assuming (H*~") ™!
=1, (2) computing (H*)™! from the update formula, and (3) computing s* as
—(H*)~! Vf(x*). Both methods minimize a positive-definite quadratic function of n
variables in at most n iterations using exact line searches but generally require sig-
nificantly more iterations than the BFGS procedure for general nonlinear functions.
A class of algorithms called variable memory quasi-Newton methods (Nash and
Sofer, 1996) partially overcomes this difficulty and provides an effective compro-
mise between standard quasi-Newton and conjugate gradient algorithms.
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PROBLEMS

6.1  If you carry out an exhaustive search (i.e., examine each grid point) for the optimum
of a function of five variables, and each step is 1/20 of the interval for each variable,
how many objective function calculations must be made?
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6.2

6.3

6.4

6.5

6.6

PART II: Optimization Theory and Methods

Consider the following minimization problem:
Minimize: f(x) = x} + xx, + x5 + 3x,

(a) Find the minimum (or minima) analytically.

(b) Are they global or relative minima?

(c) Construct four contours of f(x) [lines of constant value of f(x)].

(d) Is univariate search a good numerical method for finding the optimum of f(x)?
Why or why not? .

(e) Suppose the search direction is given by s = [1 0]7. Start at (0,0), find the opti-
mum point P, in that search direction analytically, not numerically. Repeat the
exercise for a starting point of (0,4) to find P,.

(f) Show graphically that a line connecting P, and P, passes through the optimum.

Determine a regular simplex figure in a three-dimensional space such that the dis-
tance between vertices is 0.2 unit and one vertex is at the point (—1, 2, —2).

Carry out the four stages of the simplex method to minimize the function

f(x) = x1 + 3x3
startingat x = [1 1.5]7. Use x = [1 2]” for another corner. Show each stage on
a graph. '

A three-dimensional simplex optimal search for a minimum provides the following
intermediate results:

Value of
objective
X vector function

o
=)
&

~

.4
7
10
5

~

W= W= W O

~ L | T p—

W= WA W=

WA W= W=

—_ [— e
NN

What is the next point to be evaluated in the search? What point is dropped?

Find a direction orthogonal to the vector

_[ 11 1 iIT
"TlVE V3 V3
at the point

x=[0 0 0]

Find a direction conjugate to s with respect to the Hessian matrix of the objective
function f(x) = x; + 2x2 — x;x, at the same point.
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6.7 Given the function f(x) = x? + x3 + 2x3 — x;x,, generate a set of conjugate
directions. Carry out two stages of the minimization in the conjugate directions min-
imizing f(x) in each direction. Did you reach the minimum of f(x)? Start at (1, 1, 1).

6.8 For what values of x are the following directions conjugate for the function
f(x) = x2 4+ xx, + 16x3 + x} — xx%3?

sV = §@ =

6.9 In the minimization of

f(x) = 5x3 + x5+ 2xx, — 12x; — 4x, + 8

starting at (0, —2), find a search direction s conjugate to the x, axis. Find a second
search vector s, conjugate to s,.

6.10 (a) Find two directions respectively orthogonal to

2 1 2
r_|2 _1 _%
X [3’ 3’ 3]
and each other.

(b) Find two directions respectively conjugate to the vector in part (a) and to each
other for the given matrix

S = N
_— N
W — O

6.11 The starting séarch direction from x = [2 2]7 to minimize
f(x) = x} + xx, + x5 — 3x; — 3x,
is the negaﬁve gradient. Find a conjugate direction to the starting direction. Is it unique?
6.12 Evaluate the gradient of the function

f(x) = (%) + x5)*x3 + x5xfx3

atthe point x = [1. 1 1]~
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6.13

6.14

6.15

6.16

6.17

6.18

6.19

- PART II: Optimization Theory and Methods

You are asked to maximize
fx) = x; +x, — 3(x} + 2013, + 2x,)

Begin at x = [1 1]7, and select the gradient as the first search direction. Find a sec-
ond search direction that is conjugate to the first search direction. (Do not continue
after getting the second direction.)

You wish to minimize
f(x) = 10x? + x3

If you use steepest descent starting at (1, 1) will you reach the optimum in
(a) One iteration

(b) Two iterations

(c) More that two?

Explain.
Evaluate the gradient of the function
f(x) = €52 — 2e* + 2e™ + (x1x,)?

at the point (0, 0).

Consider minimizing the function Ax) = x? + x3. Use the formula x**! = x* —
aVf(x*), where a is chosen to minimize f(x). Show that x**! will be the optimum
x after only one iteration. You should be able to optimize f{x) with respect to a ana-

lytically. Start from
3
O —
’ H

Why is the steepest descent method not widely used in unconstrained optimization
codes?

Use the Fletcher-Reeves search to find the minimum of the objective functlon
(@) f(x) = 3x} + x3

(b) f(x) = 4(x; = 5)° + (x, — 6)°

starting at x° = [1 1]7.

Discuss the advantages and disadvantages of the following two search methods for
the function shown in Figure P6.19.

(a) Steepest descent

(b) Conjugate gradient

Discuss the basic idea behind each of the two methods (don’t write out the individ-
ual steps, though). Be sure to consider the significance of the starting point for the
search.
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6.24
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FIGURE P6.19

Repeat Problem 6.18 for the Woods function.
4
f= Zl F;(x)

where Fj(x) = —200x,(x, — x3) — (1 — x,)
Fy(x) = 200(x; — x3) + 20(x, — 1) + 19.8(x, — 1)
Fy(x) = —180x3(xs — x3) — (1 — x3)
Fyx) =(-3,—-1,-3,-1)

An open cylindrical vessel is to be used to store 10 ft* of liquid. The objective func-
tion for the sum of the operating and capital costs of the vessel is

fhr) = —

wr?
Can Newton’s method be used to minimize this function? The solution is [r* #*)T =
[0.22 2.16]".

P 27rh + 107 r?

Is it necessary that the Hessian matrix of the objective function always be positive-
definite in an unconstrained minimization problem?

Cite two circumstances in which the use of the simplex method of multivariate
unconstrained optimization might be a better choice than a quasi-Newton method.

Given the function {x) = 3x? + 3x3 + 3x2 to minimize, would you expect that steep-
est descent or Newton’s method (in which adjustment of the step length is used for
minimization in the search direction) would be faster in solving the problem from
the same starting point X = [10 10 10])7? Explain the reasons for your answer.
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6.25

6.26

6.27

6.28

6.29

6.30
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Consider the following objective functions:

4 9
(a) fx)=14+x +x;+—+—
X1 X

(b) f(x) = (x; + 5)% + (xp + 8)% + (x5 + 7)* + 2x3x] + 4x}x3
Will Newton’s method converge for these functions?

Consider the minimization of the objective function

f(x) = xi + xix;, — x3x

by Newton’s method starting from the point x° = [1 1}7. A computer code carefully
programmed to execute Newton’s method has not been successful. Explain the prob-
able reason(s) for the failure.

What is the initial direction of search determined by Newton’s method for fix) = x?
+ 2x2? What is the step length? How many steps are needed to minimize f(x) ana-
lytically?

Will Newton’s method minimize Rosenbrock’s function

f(x) = 100(x; - x1)2 (1- x1)2

starting at X° = [—1.2 1.0]7 in one stage? How many stages will it take if you mini-
mize f{x) exactly on each stage? How many stages if you let the step length be unity
on each stage?

Find the minimum of the following objective function by (a) Newton’s method or (b)
Fletcher—Reeves conjugate gradient

f(x) = 8x2 + 4x,x, + 5x3.
starting at x” = [10 10].
Solve the following problems by Newton’s method:
Minimize:
(a) f(xX) =1+ x; +x, + x5+ x4+ x5+ X3 + x4
+x2x3+x2x4+x3x4+x:1"+x§+x§ + x2
starting from
xX*=[-3 -30 —4 -01]7 andalso x°=[05 1.0 80 -07]7
(b) f(x) = xpxhxdx[exp — (x + X, + x5 + x4)]
starting from

=[3 4 05 1]
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List the relative advantages and disadvantages (there can be more than one) of the fol-
lowing methods for a two-variable optimization problem such as Rosenbrock’s
“banana” function (see Fig. P6.19)

(a) Sequential simplex

(b) Conjugate gradient

(c) Newton’s method

Would your evaluation change if there were 20 independent variables in the opti-
mization problem?

Find the maximum of the function x) = 100 — (10 — x,)*> — (5 — x,)* by the
(a) Simplex method

(b) Newton’s method

(c) BFGS method

Start at x” = [0 0]. Show all equations and intermediate calculations.you use. For the
simplex method, carry out only five stages of the minimization.

For the function f(x) = (x — 100)?, use
(a) Newton’s method

(b) Quasi-Newton method

(¢) Quadratic interpolation

to minimize the function. Show all equations and intermediate calculations you use.
Start at x = 0. :

For the function f(x) = (x — 100)?, use
(a) Steepest descent

(b) Newton’s method

(¢) Quasi-Newton method

(d) Quadratic interpolation

to minimize the function. Show all equations and intermediate calculations you use.
Start at x = 0.

How can the inverse of the Hessian matrix for the function
fx) = 2x} — 2x3 — x1%
be approximated by a positive-definite matrix using the method of Marquardt?
You are to minimize f(x) = 2x7 — 4x.x, + x3.
Is H(x) positive-definite? If not, start at x° = [2 2]7, and develop an approximation

of H(x) that is positive-definite by Marquardt’s method.

Show how to make the Hessian matrix of the following objective function positive-
definite at x = [1 1]7 by using Marquardt’s method:

fix) = Zx? — 6xx, + x%



218

6.38

6.39

6.40

6.41
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The Hessian matrix of the following function
f00 = i + 1B + o

where u; = 1.5 — x;(1 — x,)
u, = 2.25 — x;(1 — x3)
uy = 2.625 — x;(1 — x3)

is not positive-definite in the vicinity of x = [0 1]7 and Newton’s method will ter-
minate at a saddle point if started there. If you start at x = [0 1]7, what procedure
should you carry out to make a Newton or quasi-Newton method continue with
searches to reach the optimum, which is in the vicinity of x = [3 0.5]7?

Determine whether the following statements are true or false, and explain the reasons

for your answer.

(a) All search methods based on conjugate directions (e.g., Fletcher—Reeves method)
always use conjugate directions.

(b) The matrix, or its inverse, used in the BFGS relation, is an approximation of the
Hessian matrix, or its inverse, of the objective function [V2 fix)].

(c) The BFGS version has the advantage over a pure Newton’s method in that the lat-
ter requires second derivatives, whereas the former requires only first derivatives
to get the search direction.

For the quasi-Newton method discussed in Section 6.4, give the values of the ele-
ments of the approximate to the Hessian (inverse Hessian) matrix for the first two
stages of search for the following problems:

(a) Maximize: f(x) = —x}+x —x}+x,+4

(b) Minimize: f(x) = xiexp[x, — x3 — 10(x; — x,)?]
f(x) = x3+ x5+ x3 + x3

starting from the point (1, 1) or (1, 1, 1, 1) as the case may be.

Estimate the values of the parameters k, and k, by minimizing the sum of the squares
of the deviations

n
d’ = 2 (yobserved - ypredieted)t2
i=1 .

where

ky —k —K

for the following data:

t | Yobserved
0.5 0.263
1.0 0.455
1.5 0.548

Plot the sum-of-squares surface with the estimated coefficients.
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6.42 Repeat Problem 6.41 for the following model and data:

6.43

6.44

6.45

_ kix,
YT T F kxy + ko,
Yobserved Xy X2
0.126 1 1
0.219 2 1
0.076 1 2
0.126 2 2
0.186 0.1 0

Approximate the minimum value of the integral

(L) -2w)e

subject to the boundary conditions dy/dx = Qatx =0andy =0 atx = 1.

Hint: Assume a trial function y(x) = a(1 — x?) that satisfies the boundary condi-
tions and find the value of a that minimizes the integral. Will a more complicated trial
function that satisfies the boundary conditions improve the estimate of the minimum

of the integral?

In a decision problem it is desired to minimize the expected risk defined as follows:

e{risk} = (1 = P)e;[1 = F(b)] + Pcﬁ(% + %Tﬂ)p(b \/2—")

2 4

b
where F(b) = ] e™“/* dy (normal probability function)

c; = 1.25 X 10°
c =15

6 = 2000

P =025

Find the minimum expected risk and b.
The function
flx) = (1 + 8x, — Txf + x] — ax1) (x3e ™) F(x,)

has two maxima and a saddle point. For (a) F(x;) = 1 and (b) F(x;) = xye @D,
locate the global optimum by a search technique.

Answer: (a) x* = [4 2]Tand (b) x* =[4 2 1]".
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6.46 By starting with (a) X’ = [2 1]7 and (b) x° = [2 1 1]7, can you reach the solutlon
for Problem 6.45? Repeat for (a) xX° = [2 2]Tand (b) x° =[2 2 1]
Hint: [2 2 1] is a saddle point.

6.47 Estimate the coefficients in the correlation
y —] axlfl xgz

from the following experimental data by minimizing the sum of the square of the
deviations between the experimental and predicted values of y.

Y, exptl X X

46.5 20 36.0

591 6.0 8.0
1285 9.0 3.0
36.8 25 6.25
241 4.5 7.84
1075 95 1.44
1024 8.0 4.0
151 4.0 7.0
80 3.0 9.0
485 7.0 2.0
632 6.5 5.0

6.48 The cost of refined oil when shipped via the Malacca Straits to Japan in dollars per
kiloliter was given (Uchiyama, 1968) as the linear sum of the crude oil cost, the insur-
ance, customs, freight cost for the oil, loading and unloading cost, sea berth cost, sub-
marine pipe cost, storage cost, tank area cost reﬁmng cost, and freight cost of prod-
ucts as

2.09 X 104703017 N 1:064 X 108g¢049%5
360 52.47 4(360)

c=c.te¢toce +

N 4.242 X 10%at®™? + 1.813ip(nt + 1.2¢)°%¢!
52.47¢(360)

425 X 10%(nt + 12q)  5.042 X 103018
52.474(360) 360

0.10494°6"!
+ —_— -
360

where a = annual fixed charges, fraction (0.20)
¢, = crude oil price, $/kL (12.50)
¢; = insurance cost, $/kL (0.50)

¢, = customs cost, $/kL (0.90)

= interest rate (0.10)

~x -
!
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number of ports (2)

= land price, $/m? (7000)
= refinery capacity, bbl/day
t = tanker size, kL

ENTAS T

Given the values indicated in parentheses, use a computer code to compute the min-
imum cost of oil and the optimum tanker size ¢ and refinery size g by Newton’s
method and the quasi-Newton method (note that 1 kL = 6.29 bbl).

(The answers in the reference were

t = 427,000 dwt ~ 485,000 kL
g = 185,000 bbl/day)
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LINEAR PROGRAMMING (LP) 1S one of the most widely used optimization tech-
niques and perhaps the most effective. The term linear programming was coined by
George Dantzig in 1947 to refer to problems in which both the objective function
and the constraints are linear (Dantzig, 1998; Martin, 1999; Vanderbei, 1999). The
word programming does not refer to computer programming, but means optimiza-
tion. This is also true in the phrases “nonlinear programmlng ” “integer program-
ming,” and so on. The following are examples of LP that occur in plant management:

1. Assign employees to schedules so that the workforce is adequate each day of the
week and worker satisfaction and productivity are as high as possible.

2. Select products to manufacture in the upcoming period, taking best advantage of
existing resources and current prices to yield maximum profit.

3. Find a pattern of distribution from plants to warehouses that will minimize costs
within the capacity limitations.

4. Submit bids on procurement contracts to take into account profit, competitors’
bids, and operating constraints.

When stated mathematically, each of these problems potentially involves many
variables, many equations, and many inequalities. A solution must not only satisfy
all of the constraints, but also must achieve an extremum of the objective function,
such as maximizing profit or minimizing cost. With the aid of modern software
“you can formulate and solve LP problems with many thousands of variables and
constraints.

7.1 GEOMETRY OF LINEAR PROGRAMS

Consider the problem

Maximize: f= x; +.3x,°

Subjectto: —x; +x, =1
X+ x, =2 ‘ (7.1)
=0, x=0

The feasible region lies within the unshaded area of Figure 7.1 defined by the inter-

sections of the half spaces satisfying the linear inequalities. The numbered points

are called extreme points, corner points, or vertices of this set. If the constraints are
linear, only a finite number of vertices exist.

' Contours of constant value of the objective function f are deﬁned by the linear

equation -

x; + 3x, = Constant = ¢ ' (7.2)

As ¢ varies, the contour is moved parallel to itself. The maximum value of fis the
largest ¢ for which the line has at least one point in common with the constraint set.
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X2

FIGURE 7.1
Geometry of a linear program.

For Figure 7.1, this point occurs for ¢ = 5, and the optimal values of x are x, = 0.5,
x, = 1.5. Note that the maximum value occurs at a vertex of the constraint set. If
the problem seeks to minimize f, the minimum is at the origin, which is again a ver-
‘tex. If the objective function were f = 2x, + 2x,, the line f = Constant would be
parallel to one of the constraint boundaries, x; + x, = 2. In this case the maximum
occurs at two extreme points, (x; = 0.5, x, = 1.5) and (x; = 2, x, = 0) and, in fact,
also occurs at all points on the, line segment joining these vertices.

- Two additional cases can exist. First, if the constraint x; + x, = 2 had been
removed, the feasible region would appear as in Figure 7.2, that is, the set would be
unbounded. Then max fis also unbounded because f can be made as large as desired
subject to the constraints. Second, at the opposite extreme, the constraint set could
be empty, as in the case where x;, + x, =< 2 is replaced by x; + x, = —1. Thus an

- LP problem may have (1) no solution, (2) an unbounded solution, (3) a single opti-
- mal solution, or (4) an infinite number of optimal solutions. The methods to be
developed deal with all these possibilities.

The fact that the extremum of a linear program always occurs at a vertex of the
feasible region is the single most important property of linear programs. It is true
for any number of variables (i.e., more than two dimensions) and forms the basis
for the simplex method for solving linear programs (not to be confused with the
simplex method discussed in Section 6.1.4). _

Of course, for many variables the geometrical ideas used here cannot be visu-
alized, and therefore the extreme points must be characterized algebraically. This is
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FIGURE 7.2
Unbounded minimum.

done in the next two sections, in which the problem is placed in standard form and
the basic results of linear programming are stated.

Standard form for linear programs

An LP problem can always be written in the following form. Choose x = (x,,
Xy - . . 5 X,) tO minimize ‘ :

f= 2% | (7.3)
j=1

Subject to: Ea,-jxj =b, i=12,..,m ' 74
i=1

J

j=1,...,n | (1.5)

l.sxjsu

where c; are the n objective function coefficients, a; and b, are parameters in the m
linear equality constraints, and /; and u; are lower and upper bounds with /; = u,.
Both /; and u; may be positive or negative. In matrix form, this problem is

Minimize: f = ¢x - (7.6)

Subject to: Ax = b - (1.7)
andl =x=u (7.8) -

A is an m X n matrix whose (i, j) element is the constraint coefficient a;, and-¢, b, -

1, u are vectors whose components are c;, b;, I, u;, respectively. If any of the Equa-

tions (7.7) were redundant, that is, linear combinations of the others, they could be

deleted without changing any solutions of the system. If there is no solution, or if |

there is only one solution for Equation (7.7), there can be no optimization. Thus the
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case of greatest interest is where the system of equations (7.7) has more unknowns
than equations and has at least two and potentially an infinite number of solutions.
This occurs if and only if

n>m

and
Rank(A) = m

We assume these conditions are true in what follows. The problem of linear pro-
gramming is to first detect whether solutions exist, and, if so, to find one yielding
the minimum f.

Note that all the constraints in Equation (7.4) are equalities. It is necessary to
place the problem in this form to solve it most easily (equations are easier to work
with here than inequalities). If the original system is not of this form, it may easily
be transformed by use of so-called slack variables. If a given constraint is an
inequality, for example,

> ay%; = b,
j=1
then define a slack variable x, ,; = 0 such that
2a'jxj + Xnti = bi
j=1
and the inequality becomes an equality. Similarly, if the inequality is

n .
> a5% = b,
=

we write

«n

Eaijxj.— Xn+i = bi

ji=1

Note that the slacks must be nonnegative to guarantee that the inequalities are sat-
isfied. :

EXAMPLE 7.1 STANDARD LP FORM

Transform the following linear program into standard form:
| Minimize: f=x; + x,
Subjectto: 2x; + 3x, = 6
xg+7x, =4
xg+ x, =3

x; =0, Xx,unconstrained in sign
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Solution. Define slack variables x3 = 0,x4 = 0. Then the problem becomes

Minimize: f=x; + x,

Subjectto:  2x; + 3x, .+ x; =6
xl + 7x2 - x4 =
x + x =

X1 = 0, X3 = O, X4 =0

In the rest of this chapter, we assume that the rows of the constraint matrix A are
linearly independent, that is, rank (A) = m. If a slack variable is inserted in every row,
then A contains a submatrix that is the identity matrix. In the preceding example, if
we insert a slack variable x5 into the equality:

x1+x2 +x5 =3 ‘
0= X5 =0 (i.e.,x5 =0)

then the rows of A are independent. Modern LP solvers automatically transform prob-
lems in this way.

7.2 BASIC LINEAR PROGRAMMING DEFINITIONS AND RESULTS

We now generalize the ideas illustrated earlier from 2 to n dimensions. Proofs of
the following theorems may be found in Dantzig (1963). First a number of standard
definitions are given.

DEFINITION 1. A feasible solution to the linear programming problem is a vec-
tor x = (x;, x,, . . . , X, that satisfies Equations (7.7) and the bounds (7.8).

DEFINITION 2. A basis matrix is an m X m nonsingular matrix formed from
some m columns of the constraint matrix A (Note: Because rank (A) = m, A con-
tains at least one basis matrix).

DEFINITION 3. A basic solution to a linear program is the unique vector deter-
mined by choosing a basis matrix, setting each of the n — m variables associated
with columns of A not in the basis matrix equal to either /; or u, and solving the
resulting square, nonsingular system of equations for the remaining m variables.

DEFINITION 4. A basic feasible solution is a bas1c solution in Wthh all vari-
ables satisfy their bounds (7.8).

DEFINITION 5. A nondegenerate basic feasible solution is a basic feasible solution
in which all basic variables x; are strictly between their bounds, that is, lj <x; <u

DEFINITION 6. An optimal solution is a feasible solution that also minimizes f
in Equation (7.6).
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For example, in the system
—x +x,+ x5 =1
x, + x, +x, =2 (7.9
=0, i=1,..4

obtained from Equation (7.1) by adding slack variables x; and x,, the matrix

ol

formed from columns 3 and 4 of the equations in (7.9) is nonsingular and hence is
a basis matrix. The corresponding basic solution of (7.9)

x1=0, x2=0, X3=1, x4=1

is a nondegenerate basic feasible solution. The matrix

-1 0
B, =
: [ 1 1]
 formed from columns 1 and 4 of Equation (7.9) is also a basis matrix. The corre-
sponding basic solution is obtained by setting x, = x; = 0 and solving

—X1 =1
X1 + Xq4 = 2
yielding x; = —1, x, = 3. This basic solution is not feasible.

The importance of these definitions is brought out by the following results:

RESULT 1. The objective function fassumes its minimum at a vertex of the fea-
sible region. If it assumes its minimum at more than one vertex, then it takes on the
same value at every point of the line segment joining any two optimal vertices.

This theorem is a multidimensional generalization of the geometric arguments
given previously. By result 1, in searching for a solution, we need only look at ver-
tices. It is thus of interest to know how to characterize vertices in many dimensions
algebraically. This information is given by the next result.

RESULT 2. A vector X = (xj, ...,x,) is a vertex of the constraint set of an LP
problem if and only if x is a basic feasible solution of the constraints (7.7)—(7.8).

Result 2 is true in two dimensions as can be seen from the example of relations
- (7.1), whose constraints have been rewritten in equation form in (7.9). The (x,, x,)
coordinates of the vertex at x; = 0, x, = 1 are given by the (x,, x,) coordinates of
the basic feasible solution

x1=0, x2=1, X3=0, .X.'4=1
The optimal vertex corresponds to the basic feasible solution

X = 05, Xy = 15, X3 = Xg = 0
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An alternative definition of a vertex provides geometric insight and generalizes
easily to nonlinear problems. Refer again to Figure 7.1. There are two variables,
and each vertex is at the intersection of two active constraints. If there were three
variables, active constraints would correspond to planes, and vertices would be
determined by the intersection of at least three active constraints. For n variables,
at least n hyperplanes must interact to define a point. We say “at least,” because it
is possible that more than n hyperplanes pass through a vertex. One can always
draw other redundant constraints through the vertices in Figure 7.1.

We can state these ideas precisely as follows. Consider any optimization prob-
lem with n variables, let x be any feasible point, and let n,(x) be the number of
active constraints at x. Recall that a constraint is active at x if it holds as an equal-
ity there. Hence equality constraints are active at any feasible point, but an inequal-
ity constraint may be active or inactive. Remember to include simple upper or lower
bounds on the variables when counting active constraints. We define the number of
degrees of freedom (dof) at x as

dOf(X) =hn- nact(x) '

DEFINITION: A feasible point x is called a vertex if dof(x) = 0 and the coeffi-
cient matrix of the active constraints at x has rank ». It is a nondegenerate vertex if
dof(x) = 0, and a degenerate vertex if dof(x) < 0, in which case abs[dof(x)] is
called the degree of degeneracy at x.

Comparing this definition with the previous one (x is a vertex if and only if it
is a basic feasible solution), if x is a basic feasible solution, then » — m nonbasic
bounds are active, plus m equalities, so

N(X)=n—m+m=n

and dof(x) = 0. If k basic variables are at their bounds, n,,(X) = n + k, and X is a
degenerate vertex with degree of degeneracy k. It is straightforward to show that the
active constraint matrix has rank n. One can reverse the argument, showmg the def-
initions are equivalent.

In nonlinear programming problems optimal solutions need not occur at ver-
tices and can occur at points with positive degrees of freedom. It is possible to have
no active constraints at a solution, for example in unconstrained problems We con-
sider nonlinear problems with constraints in Chapter 8.

Results 1 and 2 imply that, in searching for an optimal solution, we need only
consider vertices, hence only basic feasible solutions. Because a basic feasible
solution has m basic variables, an upper bound to the number of basic feasible
solutions is the number of ways m variables can be selected from a group of n vari-

ables, which is
( n > _ n!
m (n — m)! m!

For large n and m this is a very large number. Thus, for large prbblems, it is impossi-
ble to evaluate f at all vertices to find the minimum. What is needed is a computational
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scheme that selects, in an orderly fashion, a sequence of vertices, each one yield-
ing a lower value of f, until finally the minimum is attained. In this way we con-
sider only a small subset of the vertices. The simplex method, devised by G. B.
Dantzig, is such a scheme. This procedure finds a vertex and determines whether it
is optimal. If not, it finds a neighboring vertex at which the value of f is less than
or equal to the previous value. The process is iterated and in a finite number of steps
(usually between m and 2m) the minimum is found. The simplex method also dis-
covers whether the problem has no finite minimal solution (i.e., min f = —o0) or if
it has no feasible solutions (i.e., an empty constraint set). It is a powerful scheme
for solving any linear programming problem.

To explain the method, it is necessary to know how to go from one basic fea-
sible solution (BFS) to another, how to identify an optimal BFS, and how to find a
better BFS from a BFS that is not optimal. We consider these questions in the fol-
lowing two sections. The notation and approach used is that of Dantzig (1998).

Systems of linear equations and equivalent systems
Consider the system of m linear equations in » unknowns

apx; + apx, + 0+ ayx, = b

ayx, t apx, + -+ + ayx, = b, (7.10)

a,,1X1 + AppXy + - AppXy, = bm

A solution to this system is any set of variables x; . . . x, that simultaneously satis-
fies all equations. The set of all solutions to the system is called its solution set. The
system may have one, many, or no solutions. If there is no solution, the equations
are said to be inconsistent, and their solution set is empty.

‘Equivalent systems and elementary operations

Two systems of equations are said to be equivalent if they have the same solu-
tion sets. Dantzig (1998) proved that the following operations transform a given lin-
ear system into an equivalent system:

1. Multiplying any equation E; by a constant g # 0
2. Replacing any equation E, by the equation E, + gE;, where E, is any other equa-
tion of the system

These operations are called elementary row operations. For example, the linear
system of Equations (7.9)

—x1+x2+x3 =1

x1A+x2 +X4:2
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may be transformed into an equivalent system by multiplying the first equation by
—1 and adding it to the second, yielding

_x1+x2+x3 =1
le _.X'3+x4=1

Note that the solution x; = 0, x; = 0, x, = 1, x, = 2 is a solution of both sys-
tems. In fact, any solution of one system is a solution of the other.

Pivoting
A particular sequence of elementary row operations finds special application in
linear programming. This sequence is called a pivot operation, defined as follows.

DEFINITION. A pivot operation consists of m elementary operations that replace a
linear system by an equivalent system in which a specified variable has a coefficient
of unity in one equation and zero elsewhere. The detailed steps are as follows:

1. Select a term a,.x,, in row (equation) r, column (variable) s, with a,, # 0 called
the pivot term.

2. Replace the rth equation E, by the rth equation multiplied by 1/a,..

3.Foreachi=1,2,...,mexcepti = r, replace the ith equation E; by E; — a,/a,E,,
that is, by the sum of E; and the replaced rth equation multiplied by —a;,.

EXAMPLE 7.2 USE OF PIVOT OPERATIONS

Consider the system

le + 3X2 - 4X3 + X4 = 1 (a)
X = X + 5%, =6 (b)
3+ x, + x4 =2 - (c)

Transform the set of equations to an equivalent system in which x, is eliminated from
all but Equation (a), but having a unity coefficient in Equation (a).

Solution. Choose the term 2x, as the pivot term. The first operation is to make the
coefficient of this term unity, so we divide Equation (a) by 2, yielding the equivalent
system

x; + 1.5x; —2x;+ 0.5x, = 0.5 (a’)
X — X -+ 5x, =6 (b)

3+ xt+ x =2 (c)
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The next operation eliminates x; from Equation (b) by multiplying (a’) by —1 and
adding the result to Equation (b), yielding

X1 + 1.5x2 - 2.X3 + 0.5x4 = 0.5 (a’)
—2.5x, + 2x; + 4.5%, = 5.5 ()
3x1 + X2 + X3 =2 (C)

Finally, we eliminate x, from Equation (c) by multiplying (a”) by —3 and adding the
result to Equation (c), yielding

X1 + 1.5x2 - ZX3 + O.SX4 = 0.5 (a’)
—2.5x2 + ZX3 + 4.5.X4 =55 (b,)
35x, + 7x3 — 1.5x4, = 0.5 (c’)

Canonical systems

In the following discussion we assume that, in the system of Equations
(7.6)—(7.8), all lower bounds /; = 0, and all upper bounds u; = +, that is, that the
bounds become x = 0. This simplifies the exposition. The simplex method is read-
ily extended to general bounds [see Dantzig (1998)]. Assume that the first m
columns of the linear system (7.7) form a basis matrix B. Multiplying each column
of (7.7) by B! yields a transformed (but equivalent) system in which the coeffi-
cients of the variables (x,, . . ., x,,) are an identity matrix. Such a system is called

~canonical and has the form shown in Table 7.1.

The variables x,, . . . , x,, are associated with the columns of B and are called
basic variables. They are also called dependent, because if values are assigned to
the nonbasic, or independent variables, x,,, 4, . . . , x,, then x,, . . ., x,, can be deter-
mined immediately. In particular, if x,,, |, . . . , x, are all assigned zero values then
we obtain the basic solution '

X1 = bl’x2 = b2’ s Xm = bm Xm+1 Xm+2 =X = 0
TABLE 7.1
Canonical system with basic variables x,, x,, ..., x,,

Dependent
(basic)
variables Independent (nonbasic) variables Constants
x Y8y i 1Xms t Apidimez T 0 F Ay, = by

X3 t A i Xmi1 T AomadXmez + 0+ GyX, = by

Xm +am,m+1xm+1 + am,m+2xm+2 + -t Amnkn = bm
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If
bj=0, i=1,...,m

then this is a basic feasible solution. If one or more b; = 0, the basic feasible solu-
tion is degenerate.

Instead of actually computing B~! and multiplying the linear system (7.7) by
it, we can place Equation (7.7) in canonical form by a sequence of m pivot opera-
tions. First pivot on the term a,x, if a;; # 0. If a;; = 0, there exists an element in
its first row that is nonzero, since B is nonsingular. Rearranging the columns makes
this the (1, 1) element and allows the pivot. Repeating this procedure for the terms
ApXys - - - 5 A, X, generates the canonical form. Such a form will be used to begin -
the simplex algorithm.

7.3 SIMPLEX ALGORITHM

The simplex method is a two-phase procedure for finding an optimal solution to LP
problems. Phase 1 finds an initial basic feasible solution if one exists or gives the
information that one does not exist (in which case the constraints are inconsistent
and the problem has no solution). Phase 2 uses this solution as a starting point and
either (1) finds a minimizing solution or (2) yields the information that the minimum
is unbounded (i.e., —°). Both phases use the simplex algorithm described here.

In initiating the simplex algorithm, we treat the objective function

f=cx; +cxy + -0+ cpx,
as just another equation, that is,
—ft+cexiteox,+ - +c,x, =0 (7.11)

which we include in the set to form an augmented system of equations. The sim-
plex algorithm is always initiated with this augmented system in canonical form.
The basic variables are some m of the x’s, which we renumber to make the first m,
that is, x, . . . x,, and —f. The problem can then be stated as follows.

Find values of x, = 0,x, =0, . . ., x, = 0 and min f satisfying
X + A1 Xmer T A1X, = by
X2
(7.12)
Xm + QpmiXmi1 T 0 F Xy = l_),,,

(_f) + Em+1xm+1 + + En-x_:n = _f
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In this canonical form the basic solution is

f= f’flzgl""’fm:Bm’xm+l:xm+2= =xn=0 (713)
We assume that this basic solution is feasible, that is,
by =0,b,=0,...,b,=0 (7.14)

The workings of phases 1 and 2 guarantee that this assumption is always satisfied.
If Equation (7.14) holds, we say that the linear programming problem is in feasible
canonical form.

Test for optimality

If the problem is in feasible canonical form, we have a vertex directly at hand,
represented by the basic feasible solution (7.13). But the form provides even more
valuable information. By merely glancing at the numbers c¢;,j =m + 1,...,n,
you can tell if this extreme point is optimal and, if not, you can move to a better
one. Consider first the optimality test, given by the following resuit.

\

RESULT 3. A basic feasible solution is a minimal feasible solution with total
cost z if all constants ¢,,4,Cpns2s --- » C, ar€ nonnegative, that is, if

Cj

The ¢ ; are called reduced costs.

=0 j=m+1,...,n (7.15)

The proof of this result involves writing the previous equation as
f=f+ Em+1xm+l + ...+ Enxn

Because the variables x,,, ; . . . x, are presently zero and are constrained to be
nonnegative, the only way any one of them can change is for it to become positive.
But if Ej = 0 forj=m+ 1,...,n, then increasing any x; cannot decrease the
objective function fbecause then c¢;x; = 0. Because no feasible change in the non-
basic variables can cause f to decrease, the present solution must be optimal.

The reduced costs also indicate if there are multiple optima. Let all ¢; = 0
and let ¢, = 0 for some nonbasic variable x,. Then, if the constraints allow that
variable to be made positive, no change in f results, and there are multiple optima.
It is possible, however, that the variable may not be allowed by the constraints to
become positive; this may occur in the case of degenerate solutions. We consider
the effects of degeneracy later. A corollary to these results is the following:

RESULT 4. A basic feasible solution is the unique minimal feasible solution if
c¢; > 0 for all nonbasic variables.

Of course, if some c¢; < 0 then f can be decreased by increasing the corre-
sponding x;, so the present solution is probably nonoptimal. Thus we must consider
means of improving a nonoptimal solution.
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Consider the problem of minimizing f, where
S5x; — 4xy + 13x3 — 2x, + x5 =20
X1— X+ S5x3— x4+ x5 =8 (7.16)
x1+6x2— 7X3+ X4+5.x5_f=0
xx; =0 j=1.2,..,5 7.17)
We show how the canonical form can be used to improve a nonoptimal basic feasi-
ble solution.
Assume that we know that x;, x;, —f can be used as basic variables and that the
basic solution will be feasible. We can thus reduce system (7.16) to feasible canon-

ical form by pivoting successively on the terms x5 (first equation) and x, (second
equation) (—f already appears in the correct way). This yields

X5 —0.25x, + 3x;—0.75x, =5

x =075, + @ 0.25x, =3 (7.18)
—f+ 8, —24x;+ 5x, = —28
The circled term will be explained soon. The basic feasible solution is
| Xs=5, x =3 Xy=x3=x,=0, f=28 (7.19)

Note that an arbitrary pair of variables does not necessarily yield a basic solution
to Equation (7.16) that is feasible. For example, had the variables x; and x, been
chosen as basic variables, the basic solution would have been

x,=-12, x,=-20, x3=x4=x5=0, f=—132 (7.20)

which is not feasible, because x, and x, are negative. »

For the original basic feasible solution, one reduced cost is negative, namely
c3 = —24. The optimality test of relations (7.15) thus fails. Furthermore, if x; is
increaséd from its present value of zero (with all other nonbasic variables remain-
ing zero), f must decrease because, by the third equation of (7.18), f is then related
to x; by

=128 — 24x, (7.21)

How large should x; become? It is reasonable to make it as large as possible,
because the larger the value of x;, the smaller the value of f. The constraints place
a limit on the maximum value x, can attain, however. Note that, if x, = x, = 0, rela-
tions (7.18) state that the basic variables x;, x5 are related to x; by

x5=5‘3x3

X =3 — 2x3 (7.22)
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Thus as x, increases, x5 and x, decrease, and they cannot be allowed to become neg-
ative. In fact, as x; reaches 1.5, x; becomes 0 and as x, reaches 1.667, x5 becomes
0. By that time, however, x, is already negative, so the largest value x; can attain is

=15 (7.23)

Substituting this value into Equations (7.21) and (7.22) yields a new basic fea-
sible solution with lower cost: :

Xs=05,%=15x =x,=x,=0,f= —8 (7.24)

This solution reduces f from 28 to —8. The immediate objective is to see if it is opti-
mal. This can be done if the system can be placed into feasible canonical form with
Xs, X3, —f as basic variables. That is, x; must replace x, as a basic variable. One rea-
son that the simplex method is efficient is that this replacement can be accom- .
plished by doing one pivot transformation.

Previously x; had a coefficient of unity in the second equation of (7.18) and
zero elsewhere. We now wish x, to have this property, and this can be accomplished
- by pivoting on the term 2x;, circled in the second equation of (7.18). This causes x;
to become basic and x, to become nonbasic, as is seen here:

x5 — 1.5x +— 0.375x, = 0.5

x3 + 0.5x;, —0.375x, — 0.125x, = 1.5 (7.25)
—f+12x1— x2+ 2.x4=8

This gives the basic feasible solution (7.24), as predicted. It also indicates that the
present solution although better, is still not optimal, because c,, the coefficient of
x, in the f equation, is —1. Thus we can again obtain a better solution by increas-
ing x, while keeping all other nonbasic variables at zero. From Equation (7.25), the
current basic variables are then related to x, by

Xs = 0.5 — 0875x2
x3 = 1.5 + 0.375x, ' (7.26)
f=-8-1x

Note that the second equation places no bound on the increase of x,, but the first
equation restricts x, to a maximum of 0.5 / 0.875 = 0.571, which reduces x to zero.
As before, we obtain a new feasible canonical form by pivoting, this time using
0.875x, in the first equation of (7.25) as the pivot term. This yields the system

X, — 1.714x; — 0.429x, + 1.142xs = 0.571
X3 — 0.143x; — 10.286x, + 0.429x5 = 1.714 (7.27)
—f + 10.286x; + 1.571x, + 1.143x5 = 8.571
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and the basic feasible solution
=0.571,x; = 1714, x; = x, = x5 = 0,f = —8.571 (7.28)

Because all reduced costs for the nonbasic variables are positive, this solution is the
unique minimal solution of the problem, by the corollary of the previous section.
The optimum has been reached in two iterations.

Degeneracy

In the original system (7.18), if the constant on the right-hand side of the sec-
ond equation had been zero, that is, if the basic feasible solution had been degen-
erate, then x; would have been related to x; by

X, = —2x3 (7.29)

And any positive change in x; would have caused x; to become negative. Thus x,
would be forced to remain zero and f could not decrease. We go through the pivot
transformation anyway and attain a new form in which the degeneracy may not be
limiting. This can easily occur, for if relation (7.29) had been

x1=2.x:;

then x; could be made positive.

Unboundedness
If relations (7.26) had been

X5 = 05 + 0875x2
x3 = 1.5 + 0.375x,
f=-8—x

then x, could be made as large as desired without causing x5 and x; to become neg-
ative, and f could be made as small as desired. This indicates an unbounded solu- .
tion. Note that it occurs whenever all coefficients in a column with negative c; are
also negative (or zero).

Improving a nonoptimal basic feasible solution in general

Let us now formalize the procedures of the previous section. If at least one
¢; < 0, then, at least if we assume nondegeneracy (all b; > 0), it is always pos-
sible to construct, by pivoting, another basic feasible solution with lower cost. If
more than one c; < 0, the variable x, to be increased can be the one with the most
negative c;; that is, the one whose relative cost factor is

¢, =ming; < 0 (7.30)
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Although this may not lead to the greatest decrease in f (because it may not be pos-
sible to increase x, very far), this is intuitively at least a good rule for choosing the
. variable to become basic. More sophisticated “pricing” schemes have been devel-
oped, however, that perform much better and are included in most modern LP
solvers [see Bixby, 1992]. An important recent innovation is the development of
steepest edge pricing [see Forrest and Goldfarb (1992)].
Having decided on the variable x, to become basic, we increase it from zero,
-holding all other nonbasic variables zero, and observe the effects on the current
basic variables. By Equation (7.12), these are related to x, by

= b, — ax,
= by — axx,
(7.31)
= b, — QX

f=f+ESxS’ ES<O

Increasing x, decreases f, and the only factor limiting the decrease is that one of the
variables x; ...x, can become negative. However, if

a; =0, i=12,....m (7.32)
then x, can be made as large as desired. Thus we have the following result.

RESULT 5 (UNBOUNDEDNESS). If, in the canonical system for some s, all coeffi-
cients a; are nonpositive and ¢, is negative, then a class of feasible solutions can
be constructed for which the set of f values has no lower bound.

The class of solutions yielding unbounded fis the set

x,— = l_)i - C_lisxs, l = 1, A (] (7.33)

with x, any positive number and all other x; = 0. If, however, at least one a; is pos-
itive, then x, cannot be increased indefinitely because eventually some basic vari-
able becomes first zero, then negative. From Equation (7.31), x; becomes zero when
a;; > 0 and when x; attains the value
b, _ .

x,=—,a; >0 (7.34)
a A)
The first x; to become negative is the x; that requires the smallest x; to drive it to
zero. This value of x, is the greatest value for x, permitted by the nonnegativity con-
straints and is given by

(7.35)
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The basic variable x, then becomes nonbasic, to be replaced by x,. We saw from the
example in Equations (7.16)-(7.28) that a new canonical form with x, replacing x,
as a basic variable is easily obtained by pivoting on the term a,x,. Note that the
prev1ous operatlons may be viewed as simply locating that pivot term. Finding
¢, = minc; < 0 indicates that the p1vot term was in column s, and finding that
the nnmmum of the ratios b;/a; for a, > 0 occurred for i = r indicates that it
was in row 7.

As seen in the example, if the basic solution is degenerate, then the x* given
by Equation (7.35) may be zero. In particular, if some b, = 0 and the correspon-
ding a; > O then, by Equation (7.35), x¥* = 0. In this case the pivot operation is
still carried out, but fis unchanged.

Iterative procedure

The procedure of the previous section provides a means of going from one basic
feasible solution to one whose fis at least equal to the previous f (as can occur, in
the degenerate case) or lower, if there is no degeneracy. This procedure is repeated
until (1) the optimality test of relations (7.15) is passed or (2) information is pro-
vided that the solution is unbounded, leading to the main convergence result.

RESULT 6. Assuming nondegeneracy at each iteration, the simplex algorithm
terminates in a finite number of iterations.

Because the number of basic feasible solutions is finite, the algorithm can fail
to terminate only if a basic feasible solution is repeated. Such repetition implies that
the same value of fis also repeated. Under nondegeneracy, however, each value of
fis lower than the previous, so no repetition can occur, and the algorithm is finite.

Degenerate case

If, at some iteration, the basic feasible solution is degenerate, the possibility
exists that f can remain constant for some number of subsequent iterations. It is then
possible for a given set of basic variables to be repeated. An endless loop is then set
up, the optimum is never attained, and the simplex algorithm is said to have cycled.
Examples of cycling have been constructed [see Dantzig (1998), Chapter 10]. ‘

Some procedures are guaranteed to avoid cycling (Dantzig, 1998). Modern LP
solvers contain very effective antidegeneracy strategies, although most are not
guaranteed to avoid cycling. In practice, almost all LPs have degenerate optimal
solutions. A high degree of degeneracy (i.e., a high percentage of basic variables at
bounds) can slow the simplex method down considerably. Fortunately, an alterna-
tive class of LP algorithms, called barrier methods, are not affected by degeneracy.
We discuss these briefly later in the chapter.

Two phases of the simplex method

The simplex algorithm requires a basic feasible solution as a starting point. Such
a starting point is not always easy to find and, in fact, none exists if the constraints
are inconsistent. Phase 1 of the simplex method finds an initial basic feasible solution
or yields the information that none exists. Phase 2 then proceeds from this starting
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point to an optimal solution or yields the information that the solution is unbounded.
Both phases use the simplex algorithm of the previous section.

Phase 1. Phase 1 starts with some initial basis B and an initial basic (possibly
infeasible) solution (xz,Xy) satisfying

Bx; + Nxy =b © (7.36)

In the previous expression, all components of x,, are at bounds and N is the corre-
sponding matrix of coefficients for x,. Because B is nonsingular

XB = B—l(b - NXN) . (7.37)

If x, is between its bounds, the basic solution is feasible and we begin phase 2,
which optimizes the true objective. Otherwise, some components of x5 violate their
bounds. Let L and U be the sets of indices of basic variables that violate their
bounds, that is

xj' < l], jEL (7.38)
and
x, > u, jeU (7.39)

Phase 1 minimizes the following linear objective function, the sum of infeasibili-
ties, sinf;

sinf= D (L —x) + > (x; — u)) (7.40)
jelL jelU

Note that each term is positive, and that sinf = 0 if and only if the basic solution is
feasible. When minimizing sinf, the standard simplex algorithm is applied, but the
rules for choosing the pivot row described earlier must be changed, because some
basic variables are now infeasible. During this process, infeasible basic variables
can satisfy their bounds and feasible ones c